
Clock Domain Crossing

EEL 4720/5721 – Reconfigurable Computing

 1

Objective:

In this lab, you will learn how to properly communicate across clock domains. If not
handled correctly, signals that cross clock domains can become metastable, which if
propagated through your circuit will likely cause errors. In this lab, you will learn how to create
synchronizers that guarantee (with a high probability) that signals have stabilized before being
used in the destination domain. In this lab, we will be looking at 3 types of synchronizers: dual-
flop, handshake, and FIFO synchronizers.

You will again be working in groups of 2 on this project. Unless you are an EDGE student or
have special permission from the instructor, you must work in a group of 2. Note that those in
the overflow section are not EDGE students, and must work in a group of 2. Please only submit
once per group.

EDGE INSTRUCTIONS:

EDGE students must complete parts 1 and 3. Part 2 may be done for extra credit.

Part 1 – Dual-flop synchronizers

In the simplest case of clock domain crossing, a single bit must be synchronized. This
commonly occurs for simple control signals, such as a go or enable. Many beginners assume
that metastability will not be a problem for these signals, because even if the proper value isn’t
used on the current cycle, it will eventually stabilize and be correctly seen. Although there may
be situations where such assumptions can be valid, it is much safer to properly synchronize
these signals and avoid unanticipated issues.

In this part of the lab, you will see this problem. The provided code (see the part 1 directory)
provides VHDL code for the ZedBoard that uses two domains. user_app.vhd is the top level. In
the first domain, there is an entity that produces a memory-map-specified number of pulses on a
signal that crosses the clock domains. The destination domain monitors this signal and counts
the number of times that the pulse transitions from 0 to 1. The provided testbench
user_app_tb.vhd shows that the provided implementation simulates without errors. However,
there is C code provided that shows the VHDL does not work correctly on the board. The
reason is that the pulse signal is not synchronized with the destination domain.

For part 1), do the following steps:

1) Simulate the provided VHDL with the provided testbench (user_app_tb.vhd). Note that
there are no errors.

2) Create a Vivado project using the provided accelerator IP core (see earlier labs). After
you have created a block diagram with the accelerator, there are several different steps
in this lab. Double clock the Zynq in the block diagram. This will open a dialog box to
configure the Zynq. On the left, select Clock Configuration. Then expand the PL Fabric
Clocks section. Enable all four of the clocks. Set the constraint for all four clocks to 133
MHz.

The block diagram should now show the four clock outputs in the block diagram. Move
the mouse over FCLK_CLK0 then click and drag to the FCLK0 on the accelerator block.
IMPORTANT: connect the remaining clocks in the following order

FCLK_CLK3 => FCLK1

FCLK_CLK1 => FCLK 2

FCLK_CLK2 => FCLK 3

It is critical that the clocks are connected this way, otherwise you will not see any
instances of metasatability.

3) Generate a bitfile and rename it to part1.bit.

Clock Domain Crossing

EEL 4720/5721 – Reconfigurable Computing

 2

4) Upload the bitfile and provided C++ code to the class server.

5) Compile the code and run it using:

zed_schedule.py ./zed_app part1.bit

6) Verify that the circuit does not work correctly. The C++ code will output the difference
between the actual count provided by the circuit and the correct result. This difference
will likely change every time you run the code.

Save a screenshot of the output in part1_incorrect.jpg.

7) Add a dual-flop synchronizer to the pulse signal and make any other necessary changes
to the code.

8) Simulate using the provided testbench until there are no errors (you may have
introduced some).

9) Repeat 2-5 to verify that your dual-flop synchronizer has fixed any metastability
problems.

Part 2 – Handshake synchronizers

Unfortunately, the dual-flop synchronizer cannot reliably be used to transfer multiple-bit signals.
To deal with multi-bit signals, one form of synchronization is a handshake. The source domain
initially puts data into a register that crosses clock domains. However, the destination domain
does not immediately use that data. Instead, the source domain sends a data valid signal to the
destination domain, which is then acknowledged by the destination domain. These messages
are single bits that can be properly synchronized using dual-flop synchronizers. After receiving
the data valid message from the source domain, the destination domain can safely use the
multi-bit data, because it should now be stable. After receiving the acknowledgement from the
destination domain, the source domain can change the data in the register and start another
transfer.

The provided code in the handshake directory shows an incorrect implementation of a
handshake synchronizer (user_app.vhd is the top level). In this example, there is an input block
RAM (in clock domain 1) that transfers data to a datapath (in clock domain 2). The datapath
then sends outputs to an output block RAM (in clock domain 1). Like in the previous part of the
lab, the provided code simulates perfectly, but does not work on the actual FPGA. You will fix
the VHDL to properly handle the handshake.

You have two options for your implementation. A level-sensitive handshake implements the
send and acknowledge as being asserted at a particular level. Although this works, it requires
two round-trips: assert send, wait for ack, deassert send, wait for ack to reset. A more efficient
way is to use an implementation that is sensitive to transitions. See the papers provided on the
class website for more information. You will receive full credit for either implementation. Note:
the level-sensitive handshake is significantly easier (and is included in the provided code), so I
would suggest getting this version working before trying the transition-sensitive version.

For part 2), repeat the process of part 1 for the handshake entity using the provided part 2
accelerator core. Name your bitfile part2.bit.

IMPORTANT: In your readme file, make sure you briefly explain how you fixed the
handshake. For some unknown reason, the provided code actually does work sometimes
on the ZedBoard. You are still required to fix it, but since it already works, the grader may
not recognize what you did unless you describe it in the readme.

Part 3 – FIFO with multiple clock domains

Although the handshake enables arbitrarily wide data to be transferred across clock domains, it
can reduce throughput and complicates control. For example, the pipelined datapath in part 2

Clock Domain Crossing

EEL 4720/5721 – Reconfigurable Computing

 3

never had more than one valid stage of data at a time, because the source domain cannot
transfer more data until the destination domain is ready (i.e., has acknowledged the previous
data). One way of dealing with this problem is to add a buffer or FIFO that stores data in the
destination domain so that the source can immediately start a new transfer. While this works, if
we are going to use a FIFO, we can completely eliminate the handshake synchronizer.

One common feature of a FIFO is to provide a different clock domain for reading and writing.
Therefore, we can simplify the implementation in part 2, and greatly improve throughput by
adding a FIFO between the input memory and datapath inputs, and between the datapath
outputs and the output memory.

One advantage of FIFOs is simplified control. Look at the provided VHDL and read the
comments in the top-level user_app.vhd file. The input memory writes to the FIFO anytime it is
has valid data and the FIFO isn’t full. The datapath always reads from the input FIFO, even
when it is empty (invalid data is ignored later). The datapath stalls anytime the output FIFO is
full and writes data anytime its outputs are valid. The output memory reads from the output
FIFO anytime it isn’t empty.

To finish this part of the lab, you will need to create two FIFOs: one that is 32 bits wide
(fifo32.vhd) and one that is 17 bits wide (fifo17.vhd). Creating a multiple-clock domain FIFO is
not trivial. Fortunately, in this lab, you can use Xilinx Core Generator (CoreGen), which is
included as part of Vivado’s IP catalog. Open the IP catalog, select “Memories and Storage
Elements”->”FIFOs”->”FIFO Generator”. For both FIFOs, make sure you use the following
settings: native interface, independent clocks block RAM for the implementation option, and
first-word fall through for the read mode. The interface widths should be 17 or 32 depending on
whether or not this is the output or input FIFO. The depth doesn’t really matter here, so make it
small (e.g., 64). For the 32-bit FIFO, make sure to select the option for the almost_full flag
(see comments in code for explanation).

IMPORTANT: Note that the FIFO cores should be added to the project that is automatically
created when you select “Edit in IP Packager” for the accelerator core. If you add them to the
main project, it might not work.

For part 3), repeat the process of part 1 for the handshake entity using the provided part 3
accelerator core. There are two key differences for part 3. First, the provided VHDL should not
simulate correctly until you change it. Second, because you are using pre-synthesized FIFO
cores, you will have to run your simulations using Vivado’s simulator. To do this, add the
provided testbench user_app_tb.vhd as a simulation source. Next, set the testbench as the top-
level entity under simulation sources. Finally, click run simulation, which should open a
waveform viewer and start the simulation. Make sure to select “Run all” to ensure that the
simulation is complete.

Make sure to name your bitfile part3.bit.

SUBMISSION INSTRUCTIONS (One submission per group)
Make sure all group member names are at the top of every file that you modify, in addition

to the readme file!

Create a directory with your server account name. Give it the following structure:

server_account_name/

readme.txt // Group members, and anything that the grader
// needs to be aware of, handshake explanation

part1/

Clock Domain Crossing

EEL 4720/5721 – Reconfigurable Computing

 4

part1.bit // DON’T FORGET!!!!
part1_incorrect.jpg
accelerator_1.0/ // IP core from repository for part 1 with this exact

// name. Make sure all VHDL is included
part2/

part2.bit // DON’T FORGET!!!!
accelerator_1.0/ // IP core from repository for part 2 with this exact

// name. Make sure all VHDL is included
part3/

part3.bit // DON’T FORGET!!!!
accelerator_1.0/ // IP core from repository for part 3 with this exact

// name. Make sure all VHDL is included

Zip the entire directory and submit the server_account_name.zip file. Note that you do
not need to include any software code. The provided code will be used to test your
submissions.

COMMON PROBLEMS

 You may receive the following warning in ModelSim and/or Vivado: “Case choice
must be a locally static expression”. Allow in general you should avoid this
warning, it is safe to ignore for this lab. The warning is caused by the use of a
function when defining the constants used in the when statements. Most VHDL
tools now ignore this issue.

