
VHDL Tutorial

EEL 4720/5721 – Reconfigurable Computing

1

Introduction:

In this lab, you will be implementing and testing some basic digital circuits in VHDL to
familiarize yourself with VHDL simulations and synthesis. Before starting, download all
provided code off the website, which includes skeleton VHDL files and testbenches for
simulations. If you are confused about the how each entity works, use google or look at
the testbench code to see the correct output. Make sure to read my provided VHDL
tutorial. Instructions for how to simulate and synthesis will be given in class, although I
encourage you to figure it out from the Vivado documentation.

You will submit this lab on e-learning, but it will not be graded. Instead, in the case of
borderline final grades, I will check to see how much effort was made on this lab. When
submitting the lab, include all vhd files in addition to screenshots of working simulation
waveforms.

Part 1 – Install Xilinx Vivado

See the link on the lab website.

Part 2 – Vivado Tutorials

Look over the tutorials linked off the lab website. Note that the tutorials are very long, so
you do not need to know all the details. For now, as long as you are reasonably
comfortable with the simulation features and basic synthesis features of Vivado, you will
be fine. I will be demonstrating much of the functionality during class.

Part 3 – VHDL Tutorial

For all of the following parts, complete the specified entity and the simulate using the
testbench with the same name and a _tb suffix. Ensure there are no failed assertions.
Then, synthesize the entity in Vivado (for any FPGA) and ensure that there are no
warnings.

3.1 – 2-to-4 Decoder

Modify the dec2to4.vhd file to implement a 2-to-4 decoder using 4 different
architectures. Implement each architecture using the construct suggested by the
architecture name (e.g., with select, when else, if, case).

3. 2 – 4-to-2 Priority Encoder

Create a 4-to-2 priority encoder (enc4to2.vhd). For this part, you only need two
architectures based on the if and the case statement. Assume that higher inputs have
priority over lower inputs. The valid output should be asserted when any of the inputs
are 1 and should be 0 when all the inputs are 0. This valid bit is needed to understand
the output of “00” for an input of “0001” and for an input of “0000”.

3.3 – Adder + Register

Create an adder followed by a register (add_pipe.vhd). As specified in the provided file,
you should use a behavioral implementation. Note that the output of the adder is one bit
wider than the inputs. In other words, the output should include the carry. Although it
shouldn’t matter, you can assume the inputs are unsigned.

VHDL Tutorial

EEL 4720/5721 – Reconfigurable Computing

2

3.4 – Multiplier + Register

Repeat part 3.3, but replace the adder with a multiplier (mult_pipe.vhd). The output of
the multiplier should be twice the width of the inputs.

3.5 – Datapath

Implement the following datapath structurally. Use the entities from part 3.3 and part 4.3
where applicable, along with the provided register entity (reg.vhd) for the valid output
logic on the left.

* *

Reg Reg

+

Reg

in1 in2 in3 in4

output

Reg

Reg

valid_out

valid_in
width

width*2

width*2

width*2+1

width*2+1

1

1

1

width

width*2

width*2

