
Clock Domain Crossing
EEL 4720/5721 – Reconfigurable Computing

 1

Objective:

In this lab, you will learn how to properly communicate across clock domains. If not
handled correctly, signals that cross clock domains can become metastable, which if
propagated through your circuit will likely cause errors. In this lab, you will learn how to create
synchronizers that guarantee (with a high probability) that signals have stabilized before being
used in the destination domain. In this lab, we will be looking at 3 types of synchronizers: dual-
flop, handshake, and FIFO synchronizers.

Part 1 – Dual-flop synchronizers

In the simplest case of clock domain crossing, a single bit must be synchronized. This
commonly occurs for simple control signals, such as a go or enable. Many designers assume
that metastability will not be a problem for these signals, because even if the proper value isn’t
used on the current cycle, it will eventually stabilize and be correctly seen. Although there may
be situations where such assumptions can be valid, it is much safer to properly synchronize
these signals and avoid unanticipated issues.

In this part of the lab, you will see this problem. The provided code (see the part 1 directory)
provides VHDL code for the Nallatech board that uses two domains. Dual_flop_h101.vhd is the
top level. In the first domain, there is an entity that produces a memory-map specified number of
pulses on a signal that crosses the clock domains. The destination domain monitors this signal
and counts the number of times that the pulse transitions from 0 to 1. The provided testbench
shows that the provided implementation simulates without errors. However, there is C code
provided that shows the VHDL does not work correctly on the board, even when both domains
use the same frequency. The reason is that the pulse signal is not synchronized with the
destination domain.

For part 1), do the following steps:

1) Simulate the provided VHDL with the provided testbench (tb.vhd). Note that there are no
errors.

2) Create a Dimetalk project with the basic PCI-X edge, clocks module, and memory map.

3) Import the provided VHDL and generate a bitfile. Dual_flop_h101.vhd is the top level.

4) Run the provided C code and verify that the circuit does not work correctly. The C code
will output the difference between the actual count provided by the circuit and the correct
result.

5) Add a dual-flop synchronizer to the pulse signal and make any other necessary changes
to the code.

6) Simulate using the provided testbench until there are no errors (you may have
introduced some).

7) Repeat 2-4 to verify that your dual-flop synchronizer has fixed any metastability
problems.

Turn in all vhdl files, your Dimetalk DT3 file, and the generated bitfile. There are no
changes to the C code so you do not need to submit it.

Clock Domain Crossing
EEL 4720/5721 – Reconfigurable Computing

 2

Part 2 – Handshake synchronizers (only applicable to those working in groups)

Unfortunately, the dual-flop synchronizer cannot reliably be used to transfer multiple-bit signals.
To deal with multi-bit signals, one form of synchronization is a handshake. The source domain
initially puts data into a register that crosses clock domains. However, the destination domain
does not immediately use that data. Instead, the source domain sends a data valid signal to the
destination domain, which is then acknowledged by the destination domain. These messages
are single bits that can be properly synchronized using dual-flop synchronizers. After receiving
the data valid message from the source domain, the destination domain can safely use the
multi-bit data, because it should now be stable. After receiving the acknowledgement from the
destination domain, the source domain can change the data in the register and start another
transfer.

The provided code in the handshake directory shows an incorrect implementation of a
handshake synchronizer (handshake_h101.vhd is the top level). In this example, there is an
input block RAM (in clock domain 1) that transfers data to a datapath (in clock domain 2). The
datapath then sends outputs to an output block RAM (in clock domain 1). Like in the previous
part of the lab, the provided code simulates perfectly, but does not work on the actual FPGA.
You will fix the VHDL to properly handle the handshake.

You have two options for your implementation. A level-sensitive handshake implements the
send and acknowledge as being asserted at a particular level. Although this works, it requires
two round-trips: assert send, wait for ack, deassert send, wait for ack to reset. A more efficient
way is to use an implementation that is sensitive to transitions. See the papers provided on the
class website for more information. You will receive full credit for either implementation.

For part 2), do the following steps:

1) Simulate the VHDL with the provided testbench. Note that there are no errors.

2) Create a Dimetalk project with the basic PCI-X edge, clocks module, and memory map.

3) Import the provided VHDL and generate a bitfile. Handshake_h101 is the top level.

4) Run the provided C code and verify that the circuit does not work correctly. The C code
will output the differences between the actual results received in the output block RAM
and the correct results. The C code will iterate 1000 times to make sure there are no
problems with the code. Note that if the code gets stuck on a particular test, it is because
the output address generator is not receiving enough valid data, and is never asserting
done. This data is being lost due to incorrect synchronization.

5) Fix the provided handshake entity.

6) Simulate using the provided testbench until there are no errors.

7) Repeat 2-4 to verify that your synchronizer has fixed any metastability problems.

Part 3 – FIFO with multiple clock domains

Although the handshake enables arbitrarily wide data to be transferred across clock domains, it
can reduce throughput and complicates control. For example, the pipelined datapath in part 2
never had more than one valid stage of data at a time, because the source domain cannot
transfer more data until the destination domain is ready (i.e., has acknowledged the previous
data). One way of dealing with this problem is to add a buffer or FIFO that stores data in the
destination domain so that the source can immediately start a new transfer. While this works, if
we are going to use a FIFO, we can completely eliminate the handshake synchronizer.

Turn in all vhdl files, your Dimetalk DT3 file, and the generated bitfile. There are no
changes to the C code so you do not need to submit it.

Clock Domain Crossing
EEL 4720/5721 – Reconfigurable Computing

 3

One common feature of a FIFO is to provide a different clock domain for reading and writing.
Therefore, we can simplify the implementation in part 2, and greatly improve throughput by
adding a FIFO between the input memory and datapath inputs, and between the datapath
outputs and the output memory.

One advantage of FIFOs is simplified control. Look at the provided VHDL in the fifo directory.
Read the comments in the top-level fifo_h101.vhd file. The input memory writes to the FIFO
anytime it is has valid data and the FIFO isn’t full. The datapath always reads from the input
FIFO, even when it is empty (invalid data is ignored later). The datapath stalls anytime the
output FIFO is full and writes data anytime its outputs are valid. The output memory reads from
the output FIFO anytime it isn’t empty.

To finish this part of the lab, you will need to create two FIFOs: one that is 32 bits wide
(fifo32.vhd) and one that is 17 bits wide (fifo17.vhd). Creating a multiple-clock domain FIFO is
not trivial. Fortunately, in this lab, you can use Xilinx Core Generator (CoreGen). Read the Xilinx
documentation to learn how to do this (hint: Project->New Source->IP (CORE Generator ….)).
On the SelectIP dialog box, select “Memories and Storage Elements”->”FIFOs”->”FIFO
Generator”. For both FIFOs, you will need to use independent clocks, and you will need support
for “First-Word Fall Through”. Set the appropriate read and write width for each FIFO. The depth
doesn’t really matter here, so make it small, otherwise the other block RAMs will be forced to
use distributed RAM, which will take much longer to synthesize. For the 32-bit FIFO, make sure
to select the option for the almost_full flag (see comments in code for explanation).

After creating a core for each FIFO, ISE will generate a .ngc file for each core. Copy these files
into the same directory as your VHDL, and make sure to select them as support files when
importing into Dimetalk.

For part 3), do the following steps:

1) Create the FIFO cores in Core Generator.

2) Modify fifo32.vhd and fifo17.vhd to use the generated cores.

3) Simulate the VHDL with the provided testbench and fix any errors. If there are problems,
you likely didn’t select the correct options when creating the cores.

4) Create a Dimetalk project with the basic PCI-X edge, clocks module, and memory map.

5) Import the provided VHDL and generate a bitfile. Fifo_h101.vhd is the top level.

6) Run the provided C code (same as part2) to verify that the FIFOs work.

Final Instructions

Put each part of the lab in a separate directory and zip it. You only need one submission per
group. Also, include a readme.txt that explains the status of the lab (e.g., unresolved problems,
tool bugs, etc.).

Turn in all vhdl files, ngc files, your Dimetalk DT3 file, and the generated bitfile. There are
no changes to the C code so you do not need to submit it.

