

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, or republish, to post on servers or to redi-
stribute to lists, requires prior specific permission and/or a fee.
LCTES’10 April 13–15, 2010, Stockholm, Sweden.
Copyright © 2010 ACM 978-1-60558-953-4/10/04…$10.00.

Elastic Computing: A Framework for Transparent, Portable, and
Adaptive Multi-core Heterogeneous Computing

John R. Wernsing, Dr. Greg Stitt

University of Florida
Department of Electrical & Computer Engineering

Gainesville, FL, USA
wernsing@ufl.edu, gstitt@ece.ufl.edu

Abstract

Over the past decade, system architectures have started on a clear
trend towards increased parallelism and heterogeneity, often re-
sulting in speedups of 10x to 100x. Despite numerous compiler
and high-level synthesis studies, usage of such systems has largely
been limited to device experts, due to significantly increased ap-
plication design complexity. To reduce application design com-
plexity, we introduce elastic computing – a framework that sepa-
rates functionality from implementation details by enabling de-
signers to use specialized functions, called elastic functions,
which enable an optimization framework to explore thousands of
possible implementations, even ones using different algorithms.
Elastic functions allow designers to execute the same application
code efficiently on potentially any architecture and for different
runtime parameters such as input size, battery life, etc. In this
paper, we present an initial elastic computing framework that
transparently optimizes application code onto diverse systems,
achieving significant speedups ranging from 1.3x to 46x on a
hyper-threaded Xeon system with an FPGA accelerator, a 16-CPU
Opteron system, and a quad-core Xeon system.

Categories and Subject Descriptors J.6 [Computer-Aided Engi-
neering]: Computer-aided design (CAD).

General Terms Performance, Design

Keywords elastic computing; heterogeneous architectures; mul-
ti-core; FPGA; speedup

1. Introduction

The power bottleneck caused by increasing clock frequencies has
led to a trend towards increased parallelism, most notably with
multi-core microprocessors [13][15][28], in addition to increased
diversity via heterogeneous processing resources specialized for
different tasks. Such heterogeneity often includes accelerators
such as field-programmable gate arrays (FPGAs) and graphics
processing units (GPUs), which numerous studies have shown to
achieve 10x to 100x speedups over microprocessors for many
applications [5][11][18]. Due to these significant performance
improvements, the combination of multi-cores and heterogeneity,

referred to as multi-core heterogeneous systems for simplicity, is
becoming increasingly common in domains ranging from low-
power embedded systems [6][28][32], to high-performance em-
bedded computing [16][31], to high-performance computing
(HPC) systems [4][24].

Although multi-core heterogeneous systems provide signifi-
cant improvements, effective use of such systems has mainly been
limited to experts due to an increase in application design com-
plexity. Numerous approaches have aimed to reduce design com-
plexity for such systems by hiding low-level details using im-
proved compilation [9] and high-level synthesis [12][26]. Similar-
ly, new languages have been introduced to ease parallel program-
ming [2][3][7].

Although these previous approaches have had some impact on
productivity, a fundamental limitation of previous work is the
specification of an application as a single implementation. Much
prior work [10][27] has shown that different implementations of
the same application often have widely varying performances on
different architectures, which we refer to as the implementation
portability problem. For example, a designer implementing a sort-
ing function may use a merge-sort or bitonic-sort algorithm to
create an FPGA implementation but a quick-sort algorithm to
create a microprocessor implementation. Furthermore, this prob-
lem extends beyond efficiency for a particular architecture. Dif-
ferent algorithms operate more efficiently for different input sizes
[23], different amounts of resources [8], and potentially any other
runtime parameter. Although existing tools can perform transfor-
mations to optimize an implementation, those transformations
cannot convert between algorithms (e.g., quick-sort into merge-
sort), which is often required for efficiency on a particular device.
Thus, even with improved compilers, synthesis tools, and lan-
guages, efficient application design for multi-core heterogeneous
systems will still require significant designer effort, limiting usage
to device and algorithm experts.

To address these limitations, we propose a complementary ap-
proach, referred to as elastic computing, which enables transpa-
rent and portable application design for multi-core heterogeneous
systems, while also enabling adaptation to different runtime con-
ditions. Elastic computing, shown in Figure 1, is a framework,
combining standard application code – potentially written in any
language – with a library of specialized elastic functions, an im-
plementation planning tool, and an elastic computing system run-
time environment. As shown in Figure 1(a), elastic functions spe-
cify multiple implementations of the same functionality, possibly
including calls to other elastic functions, which enables imple-
mentation planning to explore and even generate thousands of
new implementations specialized for different situations such as

different input sizes, resource combinations, and potentially even
remaining battery life, current power consumption, etc. Note that
the naming convention used in this paper is to refer to an algo-
rithm using hyphened form (e.g., merge-sort) and the correspond-
ing implementation using proper noun form (e.g., Merge Sort).

One key advantage of elastic computing is the complete sepa-
ration of functionality from implementation details. As shown in
Figure 1(b) for a sorting example, the application designer simply
calls an elastic sorting function without specifying how that sort is
implemented. Instead, the elastic function call invokes the elastic
computing system which analyzes runtime parameters and selects
the most efficient implementation for the current situation by
using performance profiles previously determined during imple-
mentation planning. Thus, without any effort or knowledge of the
architecture, the application designer in this example is able to
execute a sorting implementation that elastic computing automati-
cally specializes for the current architecture, taking advantage of
the FPGA as well as a microprocessor. While previous work has
shown such optimization for specific systems, applications, and
languages, to our knowledge, elastic computing is the first genera-
lized technique that potentially enables invisible optimization of
any application for any system.

Elastic computing is largely intended to enable mainstream
application designers, who often lack the skills required for pro-
gramming specialized devices, to take advantage of such devices
with minimal effort. Of course, for elastic computing to be widely
used, an elastic function library must be provided to these applica-
tion designers. We envision that such a library could be created
for different domains, with implementations being provided by
device vendors (e.g., Xilinx, Nvidia) interested in attracting a new
market of users, third parties (e.g., Rapidmind [20]), or even by
open-source efforts. As opposed to only improving productivity of
mainstream application designers, elastic computing also provides
mechanisms that make implementation design of elastic functions
less complex than existing multi-core heterogeneous design. A
complete discussion of possible usage scenarios is discussed in
Section 6.

The paper is organized as follows. Section 2 discusses related
work. Section 3 defines elastic functions. Section 4 discusses
implementation planning. Section 5 describes the elastic compu-
ting system. Section 6 summarizes elastic computing usage scena-
rios, advantages, and limitations. Section 7 presents experimental
results.

2. Related Work

The implementation portability problem was addressed by Grattan
[10], who introduced codesign-extended applications that speci-
fied multiple implementations of a function, which enabled a
compiler to explore multiple possibilities for hardware and soft-
ware implementations. Although that approach achieved im-
provements in portability and efficiency, application designers
had to manually specify multiple implementations, resulting in
decreased productivity. With elastic computing, for cases where
an appropriate elastic function is provided, application designers
do not specify any implementation details and instead simply call
elastic functions, with efficient implementations of those func-
tions determined by the elastic computing system.

Previous work on adaptable software also shares similarities
with elastic computing. FFTW (Fastest Fourier Transform in the
West) [8] is an adaptive implementation of FFT that tunes an
implementation by composing small blocks of functionality,
called codelets, in different ways based on the particular architec-
ture. OSKI (Optimized Sparse Kernel Interface) [29] is a similar
library of automatically-tuned sparse matrix kernels. ATLAS [30]
is a software package of linear algebra kernels that are capable of
automatically tuning themselves to different architectures. Such
approaches are essentially examples of manually created elastic
functions for particular devices. PetaBricks [1] consists of a lan-
guage and compiler that enables algorithmic choice, but restricts
parallelizing decisions to static choices. Qilin [17] can dynamical-
ly determine an effective partitioning of work across heterogene-
ous resources, but targets data-parallel operations. Elastic compu-
ting aims to provide a general framework that enables any elastic

Figure 1. An overview of elastic computing, which is enabled by (a) elastic functions that enable implementation planning to explore and
even generate different implementations specialized for parameters such as input size, available resources, etc. (b) When an executing ap-
plication calls an elastic function, the elastic computing system selects the quickest implementation based on the current runtime parameters
and available resources. Note that no changes to the application code are required to use different resources.

function to be optimized for any architecture, as well as support-
ing the dynamic parallelization of work across different resources.
Also, whereas previous work has focused primarily on homoge-
neous architectures, elastic computing can potentially be used
with any multi-core heterogeneous architecture and can also adapt
to runtime changes.

3. Elastic Functions

Elastic functions form the basis of elastic computing by hiding
implementation details, allowing the application designer to simp-
ly call the elastic function and rely on the elastic computing sys-
tem to make all of the implementation decisions. As shown in
Figure 2 for a sorting example, elastic functions consist of four
components: an input/output description, a set of interfaces, a set
of implementations, and an adapter for each implementation.

The input/output description defines the input and output pa-
rameters for the elastic function, similar to a C-function prototype.
Although not used by the elastic computing system, the in-
put/output description also includes a semantic description of the
parameters. For example, in Figure 2, the input/output description
specifies that the function accepts two parameters, the first para-
meter being a pointer to an integer array which should be sorted
in-place, and the second parameter being the size of the array.

Elastic function interfaces are function prototypes that are ex-
posed to standard programming languages, which enable an appli-
cation designer to invoke an elastic function. Unlike standard
functions, elastic functions provide one or more interfaces that
enable the application designer to inform the elastic computing
system of specific assumptions. For example, because different
sorting implementations have different performances based on the
characteristics of the input data (e.g., randomly distributed, mostly
sorted), interfaces enable the designer to describe those characte-
ristics so that the elastic computing system can make better im-
plementation selection decisions. As shown in Figure 2, the elastic
function can provide a separate interface for sorting randomly
distributed data, in which case the elastic computing system may
select a Quick Sort implementation, in addition to an interface for
sorting mostly sorted data, in which case the elastic computing
system may select an Insertion Sort implementation. Each inter-
face is invoked identically (i.e., adheres to the same input/output
description).

The main difference between standard functions and elastic
functions is that elastic functions define one or more possible
implementations, each of which adheres to the input/output de-
scription. We categorize the implementations into two groups:

independent implementations and dependent implementations.
Independent implementations are binary executables for a specific
combination of resources, which can be created using any lan-
guage or compiler/synthesis tool. For example, a sorting elastic
function may have independent implementations that rely on dif-
ferent algorithms (e.g., quick-sort, insertion-sort, merge-sort) and
different resource combinations (e.g., microprocessor, FPGA,
GPU, microprocessor+FPGA, microprocessor+GPU).

Dependent implementations are defined similarly to indepen-
dent implementations, but also internally call one or more elastic
functions (i.e., the implementation depends on functionality pro-
vided by other elastic functions). For each elastic function call in
the dependent implementation, the elastic computing system se-
lects a corresponding implementation at runtime, which may be
dependent or independent. For example, a dependent implementa-
tion of a Sort elastic function may internally rely on elastic func-
tions for Split, Merge, and Sort. By referring to other elastic func-
tions, dependent implementations effectively create degrees of
freedom that enable the elastic computing system to create com-
pletely new implementations for different situations. Dependent
implementations also have the advantage of specifying explicit
task-level parallelism.

Each implementation additionally provides an adapter that al-
lows implementation planning to configure the input parameters
of the implementation, as described in detail in the following sec-
tion.

4. Implementation Planning

Implementation planning analyzes elastic function implementa-
tions and the execution resources of the system to determine a
“plan” that identifies the most efficient implementation of each
elastic function for all combinations of resources, input parame-
ters, and interfaces. Such planning is necessary to minimize the
runtime overhead of implementation selection in the elastic com-
puting system, which is discussed in Section 5. Implementation
planning executes when the elastic computing framework is in-
stalled on a system, when the elastic function library changes
(e.g., new implementations are added), or when new resources are
added to a system (e.g., adding an FPGA board).

Implementation planning outputs a performance profile for
every valid combination of elastic function interface, execution
resources, and implementation. The performance profile consists
of a set of statistically significant points, referred to as significant
points, that represent execution times for different input parame-
ters, which the elastic computing system can use to estimate the

Figure 2. Components of an example sorting elastic function.

execution time of an implementation for any combination of input
parameters via linear interpolation. Specifically, the performance
profile represents a two-dimensional plot with an abstraction re-
ferred to as the metric on the X-axis and execution time on the Y-
axis. Implementation planning internally uses the metric as an
abstract representation of the input parameters to an implementa-
tion. The adapter for each implementation provides a mapping
between metric and input parameters. For example, one possible
adapter for an Insertion Sort implementation may map the metric
value to the size of the sort. In this example, the estimated execu-
tion time for any invocation of the Insertion Sort can be found by
simply looking up the Y-value (i.e., execution time) in the per-
formance profile when the X-value (i.e., metric) is equal to the
size of the sort. More complicated adapter mappings are discussed
in Section 4.1.

By comparing the performance profiles of multiple implemen-
tations for an elastic function interface, the elastic computing
system can determine the fastest overall implementation for a
given combination of execution resources and input parameters.
For example, Figure 1 demonstrates a sorting elastic function with
several possible implementations (e.g., Insertion Sort, Merge Sort,
Quick Sort). For simplicity, the example assumes that the adapter
maps input size directly to metric. The call to the sort() from the
application code specifies that a sort for 10,000 elements is re-
quired. The elastic computing system uses the performance pro-
files for each of the implementations, evaluated at a metric of
10,000, to estimate the execution time of each implementation.
The elastic computing system then selects the implementation
with the fastest estimated execution time, a dependent implemen-
tation in this case, and initiates its execution on the available ex-
ecution resources. Note that this is just one example and different
input parameters, implementations, or execution resources could
affect the decision.

Figure 3 shows the high-level steps of the implementation
planning algorithm. The input to the algorithm is a library of elas-
tic functions (e_library) and the resources available on the
system (resources). For each iteration of the innermost loop,
the algorithm first obtains the implementation’s adapter to convert
the profiled metric values to the input parameters (Section 4.1),
and then creates a new performance profile using that adapter for
a specific combination of elastic function interface and execution
resources, using a heuristic described in Section 4.2. For depen-
dent implementations, the profiles of other implementations may
affect the performance of the current implementation. As a result,

the outermost loop repeats the profiling process until all the pro-
files stabilize, as described in Section 4.3. Section 4.4 discusses
limitations of the algorithm.

4.1 Adapter

One challenge is that implementation planning must create per-
formance profiles for any type of implementation and elastic func-
tion interface. Different implementations require different types
and amounts of resources to execute, and every implementation
has varying requirements on its input and output parameters.
Some implementations may even require allocation and initializa-
tion of secondary data structures (e.g., a sorting implementation
expecting an array of integers as input). Additionally, different
elastic function interfaces may require different types of parame-
ter initializations (e.g., populating an array with randomly distri-
buted data as opposed to mostly sorted data). Abstracting these
implementation and elastic function interface details are the pur-
pose of the adapter.

The implementation planner relies solely on an abstract value,
referred to as the metric, to represent the input parameters for any
implementation. The adapter internally provides mappings be-
tween the metric and input parameters. The adapter also provides
functionality to empirically measure the execution time of an
implementation for a given metric value. Specifically, the imple-
mentation planner can call the adapter passing in a metric value.
The adapter internally performs any necessary initialization to
execute the implementation, maps the metric value to correspond-
ing input parameters, and then executes the implementation while
measuring its execution time. The adapter then returns the result-
ing execution time, which the heuristic can use to locate the sig-
nificant points and construct the performance profile, as described
in Section 4.2.

The complexity of the adapter itself depends mostly on the dif-
ficulty of creating a mapping between input parameters and the
metric. Many implementations can have their execution time pre-
dominantly dictated by a single input parameter. For example, the
size of the input array predominantly determines the execution
time for an Insertion Sort implementation. In these cases, an adap-
ter design would typically map the metric directly to that input
parameter (e.g., map the metric to be the size of the sort) and have
the remaining parameters appropriately populated (e.g., allocate
an array of randomly distributed data to be sorted). For more
complicated implementations, other techniques such as algorith-
mic complexity analysis can be used to determine a mapping.
Algorithmic complexity analysis takes advantage of an in-depth
understanding of the factors involved in the algorithm’s execution
time to find an appropriate metric mapping. For example, one
algorithm to implement circular convolution results in a complexi-
ty analysis of Θ(|a|*|b|), that is the execution time is proportional
to the product of the two input operands. An obvious direct map-
ping in this case is not possible as the size of both operands signif-
icantly affect the execution time of the implementation. However,
if it is assumed that the proportionality factor in the complexity
analysis remains approximately constant, then one possible adap-
ter for this algorithm would be to map the metric to be the length
of one of the operands and to fix the length of the second operand
to be one. The reverse mapping from input parameters to metric
would then be to set the metric equal to the product of the lengths
of the two input parameters. This mapping works as the product is
the same. For example, if the performance profile specifies that
convolving 1,000,000 elements (mapped to metric) and 1 element
(constant) takes 2 seconds, then the estimated execution time for
convolving 1,000 elements and 1,000 elements should also be
approximately 2 seconds.

Figure 3. High-level steps of implementation planning.

To maximize prediction accuracy, the adapter should ideally
meet specific assumptions made by the performance profile crea-
tion heuristic. First, the heuristic assumes that execution time is
non-decreasing with increasing metric. Second, the heuristic as-
sumes that execution time changes smoothly with small metric
changes (i.e., no abrupt jumps). Lastly, the heuristic assumes that
for a specific metric value, execution time is distributed normally
amongst a constant mean. The closer the adapter meets these as-
sumptions, the more accurate the resulting performance profile
will be. However, even if the adapter does not perfectly meet any
of these assumptions, the resulting profile is typically still usable
albeit with reduced accuracy.

4.2 Performance Profile Creation

This section describes a heuristic for creating a performance pro-
file for a single implementation on a given set of resources. Creat-
ing the performance profiles is one of the main challenges of im-
plementation planning because unlike previous performance pre-
diction work [14][25], each profile must predict performances for
all combinations of input parameters.

The basic operation of the heuristic is to generate the perfor-
mance profile by locating the metric value of each significant
point based on prediction parameters discussed in the next para-
graph. The heuristic estimates the location of significant points by
empirically measuring the execution time of the implementation at
several metric values, a process we refer to as sampling, and then
analyzing sets of nearby samples using linear regression analysis.

The prediction parameters are defined when the elastic func-
tion library is installed, enabling different systems to tune the
heuristic for specific devices. The first prediction parameter,
which we refer to as α%, specifies the maximum allowed percent
error of the performance profile. If it is assumed that execution
time is non-decreasing with increasing metric, then spacing the
significant points α% apart, as illustrated in Figure 4, limits the
maximum percent error for any point in between the significant
points to be α%. The second prediction parameter, which we refer
to as β%, specifies the level of required confidence in the location
of each significant point. Specifically, the parameter specifies the
maximum percent width allowed for a confidence interval relative
to its location. For example, if the linear regression analysis speci-
fies that the execution time for a specific metric is 5±1 seconds,
which is also equal to 5±20% seconds, the accuracy would not be
deemed sufficient if β% was less-than 20%. The third prediction
parameter is the confidence level used for confidence interval
calculations. The last prediction parameter is the range of metric
values for which the heuristic should generate the performance
profile. The range of metric values may be different for every
implementation.

Figure 4 illustrates the detailed operation of the heuristic. First,
the heuristic starts at the smallest metric value, referred to as m0,
and collects enough samples at that metric value to be able to
determine the execution time, referred to as t0, for that metric
within β% accuracy. The resulting (m0, t0) point is the first signif-
icant point of the performance profile. Second, the heuristic in-
crements the execution time of the previous significant point
(henceforth referred to a tn-1) by α% to determine the execution
time of the current significant point (tn= tn-1+α%). Third, the heu-
ristic identifies a subset of the samples, out of all the samples it
has taken thus far, on which to perform a linear regression analy-
sis for determining if it already knows the metric value of the
current significant point (i.e., what mn would yield an execution
time of tn) within the required β% accuracy. One way to pick this
subset would be to consider only samples with an execution time
between tn-1 and tn+1 (a more robust approach is discussed in the

following paragraph). Fourth, if there are not enough samples to
determine the current significant point, the heuristic measures
another sample and the process repeats. One way the heuristic
could determine the metric value to sample would be to randomly
pick a metric within the range between mn-1 and the metric of the
first sample that has an execution time greater than tn+1 (a more
robust approach is discussed in the next paragraph). Lastly, once
the heuristic has enough samples to determine the current signifi-
cant point within β% accuracy, the heuristic appends the signifi-
cant point (mn, tn) to the performance profile and the process re-
peats with the next significant point. The heuristic completes once
the linear regression analysis reveals that the current significant
point would have a metric value greater-than the upper bound.

The procedure of selecting samples for the linear regression
analysis, used in steps three and four of the previous discussion,
made the assumption that samples are non-decreasing with in-
creasing metric, which is generally not true as there is often some
variance in execution time. A more robust approach is to not filter
out samples based on their execution time alone, but instead filter
based on the regression of the samples. To perform this filtering,
the heuristic first sorts all of the samples in ascending metric or-
der, finds the first sample with a metric greater-than or equal to
the previous significant point’s metric (mn-1), and inserts that
sample into a set S. Second, the heuristic inserts the next two
samples, in sorted increasing metric order, also into S. Three sam-
ples are initially required to avoid a non-trivial linear regression
analysis. Third, the heuristic performs a linear regression analysis
on the samples in S and calculates the execution time that the
regression line has for the largest metric in S, which is also the
last sample in S as the samples are sorted. Fourth, if this calcu-
lated execution time is less-than tn+1 then the heuristic adds the
next sample to S, also in increasing metric order, and repeats.
Lastly, if the calculated execution time is greater-than or equal to
tn+1 then the process is complete. By filtering based on the regres-
sion, the susceptibility of the heuristic to the variance inherent in
the execution time of individual samples is reduced and the entire
process becomes more robust.

Although a complete evaluation of the performance profile
creation heuristic is outside the scope of this paper, we summarize
the results as follows. In a test involving twelve different imple-
mentations having a variety of time complexities, with prediction
parameters set to α% = β% = 5%, the heuristic on average re-
quired only 374 samples and created a performance profile with
an average estimation error of 5.84% (calculated using 250 ran-
dom combinations of input parameters for each implementation).

Figure 4. Illustration of performance profile generation.

In fact, five of the twelve implementations had a prediction error
of less than 1%, with only one of the implementations having an
error of greater than 12%. Additionally, the tests showed that
when the prediction parameters were set to α% = β% = 50% (a
10x increase in allowed error), the average number of samples
dropped to 52, resulting in a 6x speedup of the heuristic, yet the
average estimation error increased only to 6.1%.

4.3 Performance Profile Stabilization

Because dependent implementations internally call elastic func-
tions, their performance profiles are dependent on the perfor-
mance profiles of the fastest implementation of each called elastic
function. This interdependence results in performance profiles that
may improve (i.e., are unstable) after every iteration of the im-
plementation planning algorithm. For example, if an updated per-
formance profile reveals a quicker implementation for sorting
10,000 elements, this would improve the execution time and
change the resulting performance profile for any dependent im-
plementation of any elastic function that happens to internally call
a sort for 10,000 elements.

Implementation planning iterates until the performance pro-
files show no improvement, which we refer to as profile stabiliza-
tion. An upper bound on the number of iterations required for
stabilization is equal to the deepest call-stack achievable by the
dependent implementations (regardless of which elastic functions
are actually called). In practice, the profiles often stabilize after
only a few iterations due to dependent implementations being
used only to parallelize the elastic function, and independent im-
plementations being used to actually perform the computation on
individual resources. As a result, the dependent implementation
call stack is only a few levels deep reflecting only the partitioning
required by the elastic function. For the evaluated applications,
the profiles stabilized after only three iterations.

4.4 Limitations

The main limitations of the implementation planning algorithm
correspond to difficulties in creating an effective adapter for an
implementation. First, an implementation must provide a way to
map a metric to input parameters. Implementations that are not
deterministic or exhibit widely varying execution times are not
suitable. Second, architecture specific effects may reduce the ac-
curacy of the performance profiles. Cache flushing, data align-
ment, and CPU pre-emption will add a level of variation to execu-
tion time measurements. However, in most cases these variations
are relatively small and can be ignored. Third, some performance
profiles will have reduced accuracy for corner cases. Corner cases
are small subsets of input parameter combinations to an imple-
mentation that force the execution time to not follow the general
trend. For example, a Quick Sort implementation exhibits an algo-
rithmic time complexity of O(n log n) for randomly distributed
data but O(n2) for already sorted data, where ‘n’ is the number of
elements to sort. In this case, a performance profile generated
using randomly distributed data would have a large percent error
if used to estimate the execution time for sorting already sorted
data. However, elastic computing alleviates the affect of corner
cases by enabling the designer to specify usage assumptions, such
as by having separate interfaces for sorting randomly distributed
data and sorting mostly sorted data.

5. Elastic Computing System

The elastic computing system, illustrated in Figure 5, serves two
main purposes. First, when an application invokes an elastic func-
tion, the elastic computing system analyzes the current available

resources and invocation parameters of the elastic function, and
then selects the fastest implementation based on the performance
profiles from implementation planning. Second, the elastic com-
puting system provides runtime services (e.g., resource allocation,
device abstraction, and communication), to support the implemen-
tations until the elastic function is complete.

The elastic computing system is invoked whenever an applica-
tion or a dependent implementation calls an elastic function via
one the function’s interfaces. When an application calls an elastic
function, the elastic computing system will by default allocate all
available resources to that elastic function, although the applica-
tion designer has the option to explicitly state which resources to
use. When a dependent implementation calls an elastic function,
the implementation itself allocates a subset of its resources to use
for that call.

With the combination of the elastic function invocation para-
meters, the list of resources, and the corresponding interface used
by the application, the elastic computing system determines the
fastest implementation for the current situation. The elastic com-
puting system determines the fastest implementation for an elastic
function by computing the estimated execution time of each can-
didate implementation and selecting the fastest. Only the imple-
mentations that support the corresponding elastic function inter-
face and that can execute on a subset of the available resources are
considered (e.g., the elastic computing system cannot select an
FPGA implementation if an FPGA is not available). For each of
those implementations, the corresponding performance profile is
used to estimate the execution time given the actual input parame-
ters of the interface’s invocation. If a performance profile does not
contain a significant point that corresponds to the current invoca-
tion parameters, the elastic computing system uses linear interpo-
lation to estimate the execution time.

After selecting the fastest implementation, the elastic compu-
ting system executes the implementation within its own execution
context, which defines the group of resources allocated for that
implementation. The resources are categorized into two types:
primary and secondary. Primary resources are controlled by the
elastic computing system and are instructed of which implementa-
tion to execute. With the current version of the elastic computing
system, only CPU’s can be primary resources, although the
framework could be extended to consider other resources. Sec-
ondary resources (e.g., FPGA’s) are associated with the execution
context but are not directly controlled. Instead, the implementa-
tion itself, running on the primary resources, has the option to take
control of any secondary resources within its same execution con-
text (e.g., an implementation running on a CPU instructing an
FPGA to perform some computation).

Before executing a selected implementation, the elastic com-
puting system first sets up the execution context and then starts
the implementation’s execution on all of the primary resources.
Each primary resource executes the same implementation. All of
the invocation parameters are passed into the implementation, as
well as an extra parameter that specifies the execution context. It
is through the execution context parameter that the different in-
stances of the implementation can communicate with each other.
In this way, the implementation running on the primary resources
are similar to a single-instruction-multiple-data (SIMD) function.
Additionally, the execution context is similar to an MPI Commu-
nicator.

When dependent implementations internally invoke an elastic
function call, the implementation has the option to partition the
execution context into multiple sub-contexts. Each sub-context is
independent of each other and can execute different elastic func-
tions and/or pass different parameters. It is through this mechan-

ism that the elastic computing system allows task-level paral-
lelism.

The elastic function is complete when the outermost imple-
mentation finishes. At this point, the elastic computing system
returns control to the originating application, which resumes ex-
ecution.

Figure 5 illustrates an example of the elastic computing sys-
tem, showing the independent implementations selected for a
sorting elastic function (details regarding execution contexts and
dependent implementations are omitted for brevity). When the
application executes the sort() interface function, the interface
invokes the elastic computing system, which searches for the fast-
est implementation for an input size of 10,000 and available re-
sources consisting of two CPU’s and one FPGA. The elastic com-
puting system uses the performance profiles of the candidate im-
plementations and determines that the fastest implementation is a
dependent implementation. The dependent implementation first
partitions the input using a CPU and then invokes two additional
elastic sorting functions, executing in parallel, to sort the parti-
tioned data. For one of those functions, the elastic computing
system determines the fastest implementation is a Quick Sort
implementation. For the other function, the elastic computing
system selects another dependent implementation that first splits
the data and then uses Insertion Sort running on a CPU and Merge
Sort running on an FPGA to sort the split data. The elastic compu-
ting system then selects a Merge implementation to merge the
results from the Insertion Sort and FPGA Merge Sort. Finally, the
outer-most dependent implementation executes a Combine im-
plementation to combine the results into the final sorted output.
The logical execution, ignoring timing, is shown on the right side
of the figure. Note that all of the information used to determine
the fastest implementation is saved in the performance profiles
from the implementation planning step.

6. Usage Scenarios

The main target for elastic computing is mainstream, non-device-
expert application designers who are solely concerned with speci-
fying functionality and often lack the expertise required to design
efficient functions for multi-core heterogeneous systems. Motivat-
ing examples include domain scientists, such as computational
biologists/chemists, who commonly write applications in
C/Fortran and MPI, and would like to use multi-core heterogene-

ous systems without becoming experts in FPGA’s, GPU’s, etc.
[21]. Although elastic computing improves upon previous ap-
proaches by using multiple implementations, assuming that ap-
propriate elastic function libraries are available, application de-
signers do not need to create these implementations. In the ideal
case, application designers would use elastic functions in the same
way as existing, widely-used function libraries.

Of course, there may be situations where new implementations
need to be created either to target new hardware or provide new
functionality. Elastic computing aids the development of new
implementations by providing an environment for implementation
execution and allowing an implementation to call existing elastic
functions. As discussed in Section 5, the elastic computing system
provides communication and resource management features to the
implementation. Additionally, as most implementations can be
broken up into simpler steps (e.g., a convex hull implementation
that internally relies on sorting), the implementation could be
coded to internally call pre-existing elastic functions, thereby
allowing even the individual steps to benefit from elastic compu-
ting. Lastly, elastic computing provides a framework for code
reuse by allowing any developed implementation to be simply
included as another implementation option for an elastic function.
As a result, the more pervasive elastic computing becomes, the
less often new implementations or elastic functions will need to be
created.

We envision that elastic function libraries could potentially be
created for different applications domains, where implementations
(and corresponding adapters) of each elastic function are provided
by several potential sources. Device vendors for specialized de-
vices are one likely source for implementations, because by enabl-
ing transparent usage of their corresponding devices via elastic
functions, those devices could potentially become useable by new
markets (e.g., mainstream designers). For example, Xilinx could
attract software designers by enabling transparent usage of their
FPGA’s via elastic function implementations for functionality
common to specific domains. Third-party library designers such
as Rapidmind [20], who already target specialized devices, could
also provide implementations of elastic functions for numerous
devices. Finally, open-source projects could potentially establish a
standardized elastic function library that could be extended with
implementations from all participants. In this situation, experts
from different domains could provide implementations optimized

Figure 5. When an application executes an elastic function, the elastic computing system uses the performance profiles from implementa-
tion planning to select and execute the fastest implementation for the available resources and input parameters.

for different situations and devices. With the ability of the elastic
computing system to automatically identify fast implementations,
mainstream application designers could transparently exploit an
implementation specialized for any given situation without any
knowledge of the actual implementation or situation.

6.1 Summary of Advantages

Transparency Elastic computing achieves transparency of im-
plementation and architecture, enabling non-expert designers to
take advantage of powerful multi-core heterogeneous systems.
Elastic computing also achieves a more transparent integration
into existing tool flows compared to new language approaches
that have largely been resisted due to the inconvenience of mod-
ifying well-established tool flows. In most cases, taking advantage
of elastic computing is a simple matter of replacing pre-existing
function calls with their elastic function equivalents.

Portability Unlike existing applications, which without modifi-
cations typically do not improve in performance when executed
on a system with more or different types of resources, elastic
computing invisibly selects/creates implementations that can util-
ize extra resources to improve performance.

Adaptability Elastic computing can adapt the implementation of
a function to runtime parameters and changes in resources. Elastic
computing has the flexibility to take advantage of as many or as
few computing resources as it deems would be most efficient. For
embedded systems, elastic computing could be extended to auto-
matically choose power-efficient implementations and avoid using
certain computing resources when battery life is low. For space
systems, elastic computing could potentially avoid using compu-
ting resources that have been flagged as being damaged or dis-
abled. Previous work has implemented similar behavior manually,
but has required significant designer effort and device expertise.

6.2 Summary of Limitations

The main limitation of elastic computing is that improvement in
design productivity depends on the percentage of code that can be
defined using elastic functions. Ideally, an elastic function library
combined with vendor-provided implementations could provide
most designers with the majority of functionality they require.

Potential limitations of implementation planning include the
time required for implementation planning to complete and the
accuracy of the resulting performance profiles. Implementation
planning requires several executions of each implementation
which may require a considerable amount of time, but this process
is only required once for a system and can be amortized over its
entire lifetime. Implementation planning creates performance
profiles by empirically measuring the execution time of imple-
mentations executing on sample input data. The empirical mea-
surements reflect system effects, such as cache size and memory
latency, but cannot account for some run-time issues, such as non-
representative input data and resource contention. However, these
effects are normally not significant enough to affect run-time
performance as the elastic computing system does not make deci-
sions based on absolute execution time (i.e., “how long will this
implementation take?”) but only relative execution time (i.e.,
“which implementation is the fastest?”). None the less, reducing
these errors is an on-going research challenge.

Another potential limitation is the runtime overhead of imple-
mentation selection by the elastic computing system. As shown in
the results, the performance improvement of using an elastic func-
tion normally greatly outweighs the overhead of dynamically
determining its implementation. For elastic functions that require

a very short execution time, the elastic computing system will
likely immediately decide on an independent implementation,
requiring the overhead of only a single implementation selection.
None the less, repeated calls to elastic functions with extremely
quick execution times could be dominated by the implementation
selection overhead. For these cases, future work focuses on com-
pile-time analysis of the source code to replace those elastic func-
tion calls with a pre-selected implementation, eliminating all run-
time overhead.

7. Experiments
7.1 Experimental Setup

To perform elastic computing experiments, we developed the
described implementation planning and elastic computing system
tools in addition to several elastic functions. In total, over 11,000
lines of C++ code were required.

We implemented a Sort elastic function, in addition to nine
others described later, with the following independent implemen-
tations: static size-2/3/4 sort network, in-place/out-of-place inser-
tion-sort, heap-sort, quick-sort, and an FPGA-based in-place/out-
of-place merge-sort. The following dependent implementations
were also created: in-place/out-of-place parallel/serial merge-sort
(i.e., two sorts followed by merging the results) and in-place/out-
of-place parallel/serial quick-sort (i.e., a partition followed by two
sorts). To enable these dependent implementations, we also
created independent implementations for elastic functions to per-
form a partition (first-step of a quick-sort implementation) and a
merge (last-step of a merge-sort implementation). All micropro-
cessor-based code was written in C++ and compiled using g++
3.4.4 with –O3 optimizations. All FPGA-based code was written
in VHDL and compiled using Xilinx ISE 9.2i.

We evaluated the elastic computing framework on three di-
verse systems. The first was a 3.2 GHz hyper-threaded Intel Xeon
microprocessor with a Nallatech H101-PCIXM FPGA accelerator
[24], which has a Xilinx Virtex IV LX100. The second was a 2.4
GHz 16-CPU AMD Opteron 880 system (8 dual-core micropro-
cessors) with no FPGA’s. The third was a 2.4 GHz quad-core
Intel Xeon also with no FPGA’s.

All results represent total execution time, including elastic
computing overhead, communication times, etc. The only over-
head not included is the configuring of the FPGA with the bitfile,
as all VHDL code was compiled into a single bitfile that was pre-
loaded at application startup. The baseline comparisons were writ-
ten using hand-optimized serial code to represent a fair alternative
to using elastic functions when targeting an arbitrary system. To
ensure accuracy, each result is the average of several executions.

7.2 Results

Figure 6 illustrates the portability advantages of elastic computing
for the sort elastic function with an input of 4,194,304 elements,
running on the 16-CPU Opteron system. The baseline is a Quick
Sort function running on a single CPU. As more resources are
allocated, the elastic function automatically takes advantage of the
additional computing power without any coding changes, result-
ing in a speedup of over 4x for 16 CPU’s.

Figure 7 illustrates similar advantages of several elastic func-
tions for embedded systems, each of which includes microproces-
sor and FPGA-based independent implementations, running on
the Xeon/Nallatech system. Sort is the previously described sort
elastic function with an input of 4,194,304 elements. Prewitt per-
forms Prewitt edge detection on a 640x480 pixel image. Conv
(convolution) convolves a 1 million length vector with a 256
length vector, with each element being single-precision floating-
point. MM (matrix multiply) multiplies two 1024x1024 matrices

using single-precision floating-point. Optical (optical flow)
creates a two-dimensional match statistic map for a 17x17 tem-
plate in a 640x480 pixel image. In all cases, elastic computing
enables the application to gain significant speedup, ranging from
1.3x to 46x, by transparently taking advantage of the multiple
cores and FPGA. The large 46x speedup of the Optical implemen-
tation is due to the FPGA exploiting a significantly larger amount
of parallelism compared to the other examples.

Figure 8 illustrates the adaptability of elastic computing by
comparing the performance between the independent implementa-
tions of sort and the elastic function. The results are shown across
different input sizes running on the Xeon/Nallatech system. For
all possible input sizes, elastic computing either achieved the fast-
est implementation or had a minimal overhead. For input sizes
greater than 512k, elastic computing significantly out-performed
the individual implementations. Note that the FPGA Merge Sort
implementation only supports input sizes less than 512k elements
due to limited on-board memory; however, the elastic function
can still make use of it with larger input sizes by relying on de-
pendent implementations to partition larger input sizes into mul-
tiple sub-sorts.

Figure 9 illustrates speedups of several additional elastic func-
tions, chosen from graph analysis, computational geometry, and
linear algebra, running on the quad-core Xeon system, compared
to serial baselines. For each elastic function, we created a parallel
independent implementation. MM (matrix multiply) multiplies

two 1000x1000 matrices using single-precision floating-point.
LCS (longest common subsequence) determines the longest com-
mon subsequence between two 2,500 character strings. FW
(Floyd-Warshall) finds the shortest path between 1,000 vertices in
a weighted directed graph. CPP (closest-point pair) determines
the closest pair of points from 1,000,000 points in a two-
dimensional space. Solver solves a system of 1,000 linear equa-
tions. Inverse inverts a 1000x1000 floating point matrix. Sort is
the previously described sorting function with 4,194,304 ele-
ments. In all cases, elastic computing transparently se-
lected/created parallel implementations for each elastic function,
resulting in speedup that ranged from 1.8x for LCS to 3.4x for
FW, achieving an average speedup of 2.6x.

Note that although these speedups were obtained by using ex-
tra resources, the significance of elastic computing is that no cod-
ing modifications were required to use those resources. To our
knowledge, no previous study has shown improved performance
for such diverse systems without manual code modifications.

8. Conclusions

In this paper, we introduced a framework for elastic computing
that is capable of separating functionality from implementation
details, allowing application designers to more easily exploit the
performance potential of multi-core heterogeneous systems. With
elastic computing, the application designer simply specifies func-

Figure 6. Portability of a Sort elastic function, illustrated by in-
creasing speedup when allocated additional resources.

Figure 7. Speedups illustrating elastic computing portability for
several elastic functions running on a hyper-threaded Intel Xeon
system with a Nallatech H101-PCIXM FPGA accelerator.

Figure 8. Elastic computing adaptability for a hyper-threaded
Intel Xeon system with a Nallatech H101-PCIXM FPGA accele-
rator, showing that for all input sizes, elastic computing achieves
the best (or near best) implementation.

Figure 9. Elastic computing speedup on a quad-core Intel Xeon
system for several elastic functions, compared to serial baselines.

tionality in terms of elastic functions, which the elastic computing
framework converts into specialized implementations through a
combination of implementation planning and the elastic compu-
ting system. We evaluated elastic computing on three diverse
systems, showing that the framework invisibly achieved speedup
(no coding changes were required) for different resource amounts.
Furthermore, we showed that elastic computing can adapt to run-
time parameters, such as input size, achieving performance signif-
icantly better than the individual implementations, even with the
overhead of the elastic computing system. Overall, elastic compu-
ting achieved significant speedup, ranging from 1.3x to 46x, with-
out any changes to the application code and without any designer
effort. Future work includes evaluation of different resources
(e.g., GPU’s), reduction of run-time overhead for elastic function
calls with input parameters partially known at compile-time, and
implementation planning for power consumption.

Acknowledgments

This research was supported by the National Science Foundation
(CNS-0914474).

References
[1] J. Ansel, C. Chan, Y.L. Wong, M. Olszewskim, Q. Zhao, A. Edel-

man, and S. Amarasinghe. PetaBricks: A Language and Compiler for
Algorithmic Choice. Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
2009, pp. 38-49.

[2] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability
and the Chapel Language. International Journal of High Performance
Computing Applications, Vol. 21, Issue 3, August 2007, pg. 291-
312.

[3] W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and K.
Yelick. A Performance Analysis of the Berkeley UPC Compiler.
Proceedings of the International Conference on Supercomputing
(ICS), 2003, pg. 63-73.

[4] Cray, Inc. Cray XT5 System. 2008.
http://www.cray.com/Products/XT/Product/Technology.aspx.

[5] A. DeHon. The Density Advantage of Configurable Computing.
Computer, Vol. 33, Issue 4, April 2000, pp 41-49.

[6] ElementCXI, Inc. ECA-64.
http://www.elementcxi.com/productbrief.html.

[7] A. Fin, F. Fummi, and M. Signoretto. SystemC: A Homogenous
Environment to Test Embedded Systems. Proceedings of the Interna-
tional Workshop on Hardware/Software Codesign (CODES), 2001,
pp 17-22.

[8] M. Frigo and S. Johnson. FFTW: an Adaptive Software Architecture
for the FFT. Acoustics, Speech and Signal Processing. Proceedings
of the IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, 1998, pp. 1381-1384.

[9] M. Girkar and C. Polychronopoulos. Extracting Task-Level Paral-
lelism. ACM Transactions on Programming Languages and Systems
(TOPLAS), Vol. 17, Issue 4, July 1995, pp. 600-634.

[10] B. Grattan, G. Stitt and F. Vahid. Codesign-Extended Applications.
IEEE/ACM International Symposium on Hardware/Software Code-
sign (CODES), 2002, pp. 1-6.

[11] Z. Guo, W. Najjar, F. Vahid, and K. Vissers. A Quantitative Analysis
of the Speedup Factors of FPGAs over Processors. Proceedings of
the International Symposium on Field Programmable Gate Arrays
(FPGA), pp. 162-170, 2004.

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A High-Level
Synthesis Framework for Applying Parallelizing Compiler Trans-
formations. Proceedings of International Conference on VLSI Design
(VLSI), 2003.

[13] H. Peter Hofstee. Power Efficient Processor Architecture and the
Cell Processor. Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 2005, pg. 258-262.

[14] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A. George.
RAT: a Methodology for Predicting Performance in Application De-
sign Migration to FPGAs. Proceedings of the Workshop on High-
Performance Reconfigurable Computing Technology and Applica-
tions (HPRCTA), pp 1-10, 2007.

[15] Intel Quad-Core Xeon. 2008. http://www.intel.com.

[16] L. Lewins and K. Prager. Experience and Results Porting HPEC
Benchmarks to MONARCH. Proceedings of Workshop on High Per-
formance Embedded Computing (HPEC), 2008.

[17] C. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism on Hete-
rogeneous Multiprocessors with Adaptive Mapping. Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2009, pg. 45-55.

[18] M. Macedonia. The GPU Enters Computing’s Mainstream. IEEE
Computer, Vol. 36, No. 10, October 2003, pp. 106-108.

[19] I. McCallum. Intel QuickAssist Technology Accelerator Abstraction
Layer (AAL) 317481-001US. 2007.
http://download.intel.com/technology/platforms/quickassist/quickassi
st_aal_whitepaper.pdf.

[20] M. D. McCool. Data-parallel programming on Cell BE and the GPU
using the Rapidmind development platform. In GSPx Multicore Ap-
plications Conference, 2006.

[21] S. Merchant, B. Holland, C. Reardon, et al. Strategic Challenges for
Application Development Productivity in Reconfigurable Compu-
ting. Proceedings of the IEEE National Areospace and Electronics
Conference (NAECON), 2008.

[22] K. Morris. FPGAs in Space: Programmable Logic in Orbit. FPGA
and Structured ASIC Journal, August, 2004.

[23] D. Musser. Introspective Sorting and Selection Algorithms. Soft-
ware: Practice and Experience, Vol. 27, Issue 8, 1999, pp. 983-993.

[24] Nallatech Inc. Nallatech PCIXM FPGA accelerator card, 2008.
http://www.nallatech.com/?node_id=1.2.2&id=41.

[25] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S.
Harper, and D. V. Wilcox. Pace—A Toolset for the Performance
Prediction of Parallel and Distributed Systems. International Journal
of High Performance Computing Applications, Vol. 14, No. 3, 2000,
pp. 228-251.

[26] L. Semeria, K. Sato, and G. De Micheli. Synthesis of Hardware
Models in C with Pointers and Complex Data Structures. IEEE
Transactions of Very Large Scale Integration Systems (TVLSI), Vol.
9, Issue 6, December 2001, pp. 743-756.

[27] G. Stitt, F. Vahid, and W. Najjar. A Code Refinement Methodology
for Performance-Improved Synthesis from C. Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2006, pp. 716-723

[28] Tilera Tile64 Processor Family. 2008.
http://www.tilera.com/products/processors.php.

[29] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A Library of Automati-
cally Tuned Sparse Matrix Kernels. Journal of Physics, June 2005.

[30] R. Whaley and J. Dongarra. Automatically Tuned Linear Algebra
Software. Proceedings of ACM/IEEE Conference on Supercomput-
ing (SC), 1998, pp. 1-27.

[31] J. Williams, A. George, J. Richardson, K. Gosrani, and S. Suresh.
Fixed and Reconfigurable Multi-Core Device Characterization for
HPEC. Proceedings of Workshop on High-Performance Embedded
Computing (HPEC), 2008.

[32] Xilinx Inc. Virtex IV FX devices, 2008.
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex
4/index.htm.

