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Abstract  

Over the past decade, system architectures have started on a clear 
trend towards increased parallelism and heterogeneity, often re-
sulting in speedups of 10x to 100x. Despite numerous compiler 
and high-level synthesis studies, usage of such systems has largely 
been limited to device experts, due to significantly increased ap-
plication design complexity. To reduce application design com-
plexity, we introduce elastic computing – a framework that sepa-
rates functionality from implementation details by enabling de-
signers to use specialized functions, called elastic functions, 
which enable an optimization framework to explore thousands of 
possible implementations, even ones using different algorithms. 
Elastic functions allow designers to execute the same application 
code efficiently on potentially any architecture and for different 
runtime parameters such as input size, battery life, etc. In this 
paper, we present an initial elastic computing framework that 
transparently optimizes application code onto diverse systems, 
achieving significant speedups ranging from 1.3x to 46x on a 
hyper-threaded Xeon system with an FPGA accelerator, a 16-CPU 
Opteron system, and a quad-core Xeon system. 

Categories and Subject Descriptors J.6 [Computer-Aided Engi-
neering]: Computer-aided design (CAD). 

General Terms Performance, Design 

Keywords elastic computing; heterogeneous architectures; mul-
ti-core; FPGA; speedup 

1. Introduction 

The power bottleneck caused by increasing clock frequencies has 
led to a trend towards increased parallelism, most notably with 
multi-core microprocessors [13][15][28], in addition to increased 
diversity via heterogeneous processing resources specialized for 
different tasks. Such heterogeneity often includes accelerators 
such as field-programmable gate arrays (FPGAs) and graphics 
processing units (GPUs), which numerous studies have shown to 
achieve 10x to 100x speedups over microprocessors for many 
applications [5][11][18]. Due to these significant performance 
improvements, the combination of multi-cores and heterogeneity, 

referred to as multi-core heterogeneous systems for simplicity, is 
becoming increasingly common in domains ranging from  low-
power embedded systems [6][28][32], to high-performance em-
bedded computing [16][31], to high-performance computing 
(HPC) systems [4][24]. 

Although multi-core heterogeneous systems provide signifi-
cant improvements, effective use of such systems has mainly been 
limited to experts due to an increase in application design com-
plexity. Numerous approaches have aimed to reduce design com-
plexity for such systems by hiding low-level details using im-
proved compilation [9] and high-level synthesis [12][26]. Similar-
ly, new languages have been introduced to ease parallel program-
ming [2][3][7]. 

Although these previous approaches have had some impact on 
productivity, a fundamental limitation of previous work is the 
specification of an application as a single implementation. Much 
prior work [10][27] has shown that different implementations of 
the same application often have widely varying performances on 
different architectures, which we refer to as the implementation 
portability problem. For example, a designer implementing a sort-
ing function may use a merge-sort or bitonic-sort algorithm to 
create an FPGA implementation but a quick-sort algorithm to 
create a microprocessor implementation. Furthermore, this prob-
lem extends beyond efficiency for a particular architecture. Dif-
ferent algorithms operate more efficiently for different input sizes 
[23], different amounts of resources [8], and potentially any other 
runtime parameter. Although existing tools can perform transfor-
mations to optimize an implementation, those transformations 
cannot convert between algorithms (e.g., quick-sort into merge-
sort), which is often required for efficiency on a particular device. 
Thus, even with improved compilers, synthesis tools, and lan-
guages, efficient application design for multi-core heterogeneous 
systems will still require significant designer effort, limiting usage 
to device and algorithm experts. 

To address these limitations, we propose a complementary ap-
proach, referred to as elastic computing, which enables transpa-
rent and portable application design for multi-core heterogeneous 
systems, while also enabling adaptation to different runtime con-
ditions. Elastic computing, shown in Figure 1, is a framework, 
combining standard application code – potentially written in any 
language – with a library of specialized elastic functions, an im-
plementation planning tool, and an elastic computing system run-
time environment. As shown in Figure 1(a), elastic functions spe-
cify multiple implementations of the same functionality, possibly 
including calls to other elastic functions, which enables imple-
mentation planning to explore and even generate thousands of 
new implementations specialized for different situations such as 



different input sizes, resource combinations, and potentially even 
remaining battery life, current power consumption, etc. Note that 
the naming convention used in this paper is to refer to an algo-
rithm using hyphened form (e.g., merge-sort) and the correspond-
ing implementation using proper noun form (e.g., Merge Sort). 

One key advantage of elastic computing is the complete sepa-
ration of functionality from implementation details. As shown in 
Figure 1(b) for a sorting example, the application designer simply 
calls an elastic sorting function without specifying how that sort is 
implemented. Instead, the elastic function call invokes the elastic 
computing system which analyzes runtime parameters and selects 
the most efficient implementation for the current situation by 
using performance profiles previously determined during imple-
mentation planning. Thus, without any effort or knowledge of the 
architecture, the application designer in this example is able to 
execute a sorting implementation that elastic computing automati-
cally specializes for the current architecture, taking advantage of 
the FPGA as well as a microprocessor. While previous work has 
shown such optimization for specific systems, applications, and 
languages, to our knowledge, elastic computing is the first genera-
lized technique that potentially enables invisible optimization of 
any application for any system. 

Elastic computing is largely intended to enable mainstream 
application designers, who often lack the skills required for pro-
gramming specialized devices, to take advantage of such devices 
with minimal effort. Of course, for elastic computing to be widely 
used, an elastic function library must be provided to these applica-
tion designers. We envision that such a library could be created 
for different domains, with implementations being provided by 
device vendors (e.g., Xilinx, Nvidia) interested in attracting a new 
market of users, third parties (e.g., Rapidmind [20]), or even by 
open-source efforts. As opposed to only improving productivity of 
mainstream application designers, elastic computing also provides 
mechanisms that make implementation design of elastic functions 
less complex than existing multi-core heterogeneous design. A 
complete discussion of possible usage scenarios is discussed in 
Section 6. 

The paper is organized as follows. Section 2 discusses related 
work. Section 3 defines elastic functions. Section 4 discusses 
implementation planning. Section 5 describes the elastic compu-
ting system. Section 6 summarizes elastic computing usage scena-
rios, advantages, and limitations. Section 7 presents experimental 
results. 

2. Related Work 

The implementation portability problem was addressed by Grattan 
[10], who introduced codesign-extended applications that speci-
fied multiple implementations of a function, which enabled a 
compiler to explore multiple possibilities for hardware and soft-
ware implementations. Although that approach achieved im-
provements in portability and efficiency, application designers 
had to manually specify multiple implementations, resulting in 
decreased productivity. With elastic computing, for cases where 
an appropriate elastic function is provided, application designers 
do not specify any implementation details and instead simply call 
elastic functions, with efficient implementations of those func-
tions determined by the elastic computing system. 

Previous work on adaptable software also shares similarities 
with elastic computing. FFTW (Fastest Fourier Transform in the 
West) [8] is an adaptive implementation of FFT that tunes an 
implementation by composing small blocks of functionality, 
called codelets, in different ways based on the particular architec-
ture. OSKI (Optimized Sparse Kernel Interface) [29] is a similar 
library of automatically-tuned sparse matrix kernels. ATLAS [30] 
is a software package of linear algebra kernels that are capable of 
automatically tuning themselves to different architectures. Such 
approaches are essentially examples of manually created elastic 
functions for particular devices. PetaBricks [1] consists of a lan-
guage and compiler that enables algorithmic choice, but restricts 
parallelizing decisions to static choices. Qilin [17] can dynamical-
ly determine an effective partitioning of work across heterogene-
ous resources, but targets data-parallel operations. Elastic compu-
ting aims to provide a general framework that enables any elastic 

Figure 1. An overview of elastic computing, which is enabled by (a) elastic functions that enable implementation planning to explore and 
even generate different implementations specialized for parameters such as input size, available resources, etc. (b) When an executing ap-
plication calls an elastic function, the elastic computing system selects the quickest implementation based on the current runtime parameters 
and available resources. Note that no changes to the application code are required to use different resources. 



function to be optimized for any architecture, as well as support-
ing the dynamic parallelization of work across different resources. 
Also, whereas previous work has focused primarily on homoge-
neous architectures, elastic computing can potentially be used 
with any multi-core heterogeneous architecture and can also adapt 
to runtime changes.  

3. Elastic Functions 

Elastic functions form the basis of elastic computing by hiding 
implementation details, allowing the application designer to simp-
ly call the elastic function and rely on the elastic computing sys-
tem to make all of the implementation decisions. As shown in 
Figure 2 for a sorting example, elastic functions consist of four 
components: an input/output description, a set of interfaces, a set 
of implementations, and an adapter for each implementation.  

The input/output description defines the input and output pa-
rameters for the elastic function, similar to a C-function prototype. 
Although not used by the elastic computing system, the in-
put/output description also includes a semantic description of the 
parameters. For example, in Figure 2, the input/output description 
specifies that the function accepts two parameters, the first para-
meter being a pointer to an integer array which should be sorted 
in-place, and the second parameter being the size of the array.  

Elastic function interfaces are function prototypes that are ex-
posed to standard programming languages, which enable an appli-
cation designer to invoke an elastic function. Unlike standard 
functions, elastic functions provide one or more interfaces that 
enable the application designer to inform the elastic computing 
system of specific assumptions. For example, because different 
sorting implementations have different performances based on the 
characteristics of the input data (e.g., randomly distributed, mostly 
sorted), interfaces enable the designer to describe those characte-
ristics so that the elastic computing system can make better im-
plementation selection decisions. As shown in Figure 2, the elastic 
function can provide a separate interface for sorting randomly 
distributed data, in which case the elastic computing system may 
select a Quick Sort implementation, in addition to an interface for 
sorting mostly sorted data, in which case the elastic computing 
system may select an Insertion Sort implementation. Each inter-
face is invoked identically (i.e., adheres to the same input/output 
description). 

The main difference between standard functions and elastic 
functions is that elastic functions define one or more possible 
implementations, each of which adheres to the input/output de-
scription. We categorize the implementations into two groups: 

independent implementations and dependent implementations. 
Independent implementations are binary executables for a specific 
combination of resources, which can be created using any lan-
guage or compiler/synthesis tool. For example, a sorting elastic 
function may have independent implementations that rely on dif-
ferent algorithms (e.g., quick-sort, insertion-sort, merge-sort) and 
different resource combinations (e.g., microprocessor, FPGA, 
GPU, microprocessor+FPGA, microprocessor+GPU).  

Dependent implementations are defined similarly to indepen-
dent implementations, but also internally call one or more elastic 
functions (i.e., the implementation depends on functionality pro-
vided by other elastic functions). For each elastic function call in 
the dependent implementation, the elastic computing system se-
lects a corresponding implementation at runtime, which may be 
dependent or independent. For example, a dependent implementa-
tion of a Sort elastic function may internally rely on elastic func-
tions for Split, Merge, and Sort. By referring to other elastic func-
tions, dependent implementations effectively create degrees of 
freedom that enable the elastic computing system to create com-
pletely new implementations for different situations. Dependent 
implementations also have the advantage of specifying explicit 
task-level parallelism. 

Each implementation additionally provides an adapter that al-
lows implementation planning to configure the input parameters 
of the implementation, as described in detail in the following sec-
tion.  

4. Implementation Planning 

Implementation planning analyzes elastic function implementa-
tions and the execution resources of the system to determine a 
“plan” that identifies the most efficient implementation of each 
elastic function for all combinations of resources, input parame-
ters, and interfaces. Such planning is necessary to minimize the 
runtime overhead of implementation selection in the elastic com-
puting system, which is discussed in Section 5. Implementation 
planning executes when the elastic computing framework is in-
stalled on a system, when the elastic function library changes 
(e.g., new implementations are added), or when new resources are 
added to a system (e.g., adding an FPGA board).  

Implementation planning outputs a performance profile for 
every valid combination of elastic function interface, execution 
resources, and implementation. The performance profile consists 
of a set of statistically significant points, referred to as significant 
points, that represent execution times for different input parame-
ters, which the elastic computing system can use to estimate the 

Figure 2. Components of an example sorting elastic function.



execution time of an implementation for any combination of input 
parameters via linear interpolation. Specifically, the performance 
profile represents a two-dimensional plot with an abstraction re-
ferred to as the metric on the X-axis and execution time on the Y-
axis. Implementation planning internally uses the metric as an 
abstract representation of the input parameters to an implementa-
tion. The adapter for each implementation provides a mapping 
between metric and input parameters. For example, one possible 
adapter for an Insertion Sort implementation may map the metric 
value to the size of the sort. In this example, the estimated execu-
tion time for any invocation of the Insertion Sort can be found by 
simply looking up the Y-value (i.e., execution time) in the per-
formance profile when the X-value (i.e., metric) is equal to the 
size of the sort. More complicated adapter mappings are discussed 
in Section 4.1.  

By comparing the performance profiles of multiple implemen-
tations for an elastic function interface, the elastic computing 
system can determine the fastest overall implementation for a 
given combination of execution resources and input parameters. 
For example, Figure 1 demonstrates a sorting elastic function with 
several possible implementations (e.g., Insertion Sort, Merge Sort, 
Quick Sort). For simplicity, the example assumes that the adapter 
maps input size directly to metric. The call to the sort() from the 
application code specifies that a sort for 10,000 elements is re-
quired. The elastic computing system uses the performance pro-
files for each of the implementations, evaluated at a metric of 
10,000, to estimate the execution time of each implementation. 
The elastic computing system then selects the implementation 
with the fastest estimated execution time, a dependent implemen-
tation in this case, and initiates its execution on the available ex-
ecution resources. Note that this is just one example and different 
input parameters, implementations, or execution resources could 
affect the decision. 

Figure 3 shows the high-level steps of the implementation 
planning algorithm. The input to the algorithm is a library of elas-
tic functions (e_library) and the resources available on the 
system (resources). For each iteration of the innermost loop, 
the algorithm first obtains the implementation’s adapter to convert 
the profiled metric values to the input parameters (Section 4.1), 
and then creates a new performance profile using that adapter for 
a specific combination of elastic function interface and execution 
resources, using a heuristic described in Section 4.2. For depen-
dent implementations, the profiles of other implementations may 
affect the performance of the current implementation. As a result, 

the outermost loop repeats the profiling process until all the pro-
files stabilize, as described in Section 4.3. Section 4.4 discusses 
limitations of the algorithm.  

4.1 Adapter 

One challenge is that implementation planning must create per-
formance profiles for any type of implementation and elastic func-
tion interface. Different implementations require different types 
and amounts of resources to execute, and every implementation 
has varying requirements on its input and output parameters. 
Some implementations may even require allocation and initializa-
tion of secondary data structures (e.g., a sorting implementation 
expecting an array of integers as input). Additionally, different 
elastic function interfaces may require different types of parame-
ter initializations (e.g., populating an array with randomly distri-
buted data as opposed to mostly sorted data). Abstracting these 
implementation and elastic function interface details are the pur-
pose of the adapter. 

The implementation planner relies solely on an abstract value, 
referred to as the metric, to represent the input parameters for any 
implementation. The adapter internally provides mappings be-
tween the metric and input parameters. The adapter also provides 
functionality to empirically measure the execution time of an 
implementation for a given metric value. Specifically, the imple-
mentation planner can call the adapter passing in a metric value. 
The adapter internally performs any necessary initialization to 
execute the implementation, maps the metric value to correspond-
ing input parameters, and then executes the implementation while 
measuring its execution time. The adapter then returns the result-
ing execution time, which the heuristic can use to locate the sig-
nificant points and construct the performance profile, as described 
in Section 4.2.  

The complexity of the adapter itself depends mostly on the dif-
ficulty of creating a mapping between input parameters and the 
metric. Many implementations can have their execution time pre-
dominantly dictated by a single input parameter. For example, the 
size of the input array predominantly determines the execution 
time for an Insertion Sort implementation. In these cases, an adap-
ter design would typically map the metric directly to that input 
parameter (e.g., map the metric to be the size of the sort) and have 
the remaining parameters appropriately populated (e.g., allocate 
an array of randomly distributed data to be sorted). For more 
complicated implementations, other techniques such as algorith-
mic complexity analysis can be used to determine a mapping. 
Algorithmic complexity analysis takes advantage of an in-depth 
understanding of the factors involved in the algorithm’s execution 
time to find an appropriate metric mapping. For example, one 
algorithm to implement circular convolution results in a complexi-
ty analysis of Θ(|a|*|b|), that is the execution time is proportional 
to the product of the two input operands. An obvious direct map-
ping in this case is not possible as the size of both operands signif-
icantly affect the execution time of the implementation. However, 
if it is assumed that the proportionality factor in the complexity 
analysis remains approximately constant, then one possible adap-
ter for this algorithm would be to map the metric to be the length 
of one of the operands and to fix the length of the second operand 
to be one. The reverse mapping from input parameters to metric 
would then be to set the metric equal to the product of the lengths 
of the two input parameters. This mapping works as the product is 
the same. For example, if the performance profile specifies that 
convolving 1,000,000 elements (mapped to metric) and 1 element 
(constant) takes 2 seconds, then the estimated execution time for 
convolving 1,000 elements and 1,000 elements should also be 
approximately 2 seconds. 

Figure 3. High-level steps of implementation planning.



To maximize prediction accuracy, the adapter should ideally 
meet specific assumptions made by the performance profile crea-
tion heuristic. First, the heuristic assumes that execution time is 
non-decreasing with increasing metric. Second, the heuristic as-
sumes that execution time changes smoothly with small metric 
changes (i.e., no abrupt jumps). Lastly, the heuristic assumes that 
for a specific metric value, execution time is distributed normally 
amongst a constant mean. The closer the adapter meets these as-
sumptions, the more accurate the resulting performance profile 
will be. However, even if the adapter does not perfectly meet any 
of these assumptions, the resulting profile is typically still usable 
albeit with reduced accuracy. 

4.2 Performance Profile Creation 

This section describes a heuristic for creating a performance pro-
file for a single implementation on a given set of resources. Creat-
ing the performance profiles is one of the main challenges of im-
plementation planning because unlike previous performance pre-
diction work [14][25], each profile must predict performances for 
all combinations of input parameters.  

The basic operation of the heuristic is to generate the perfor-
mance profile by locating the metric value of each significant 
point based on prediction parameters discussed in the next para-
graph. The heuristic estimates the location of significant points by 
empirically measuring the execution time of the implementation at 
several metric values, a process we refer to as sampling, and then 
analyzing sets of nearby samples using linear regression analysis. 

The prediction parameters are defined when the elastic func-
tion library is installed, enabling different systems to tune the 
heuristic for specific devices. The first prediction parameter, 
which we refer to as α%, specifies the maximum allowed percent 
error of the performance profile. If it is assumed that execution 
time is non-decreasing with increasing metric, then spacing the 
significant points α% apart, as illustrated in Figure 4, limits the 
maximum percent error for any point in between the significant 
points to be α%. The second prediction parameter, which we refer 
to as β%, specifies the level of required confidence in the location 
of each significant point. Specifically, the parameter specifies the 
maximum percent width allowed for a confidence interval relative 
to its location. For example, if the linear regression analysis speci-
fies that the execution time for a specific metric is 5±1 seconds, 
which is also equal to 5±20% seconds, the accuracy would not be 
deemed sufficient if β% was less-than 20%. The third prediction 
parameter is the confidence level used for confidence interval 
calculations. The last prediction parameter is the range of metric 
values for which the heuristic should generate the performance 
profile. The range of metric values may be different for every 
implementation. 

Figure 4 illustrates the detailed operation of the heuristic. First, 
the heuristic starts at the smallest metric value, referred to as m0, 
and collects enough samples at that metric value to be able to 
determine the execution time, referred to as t0, for that metric 
within β% accuracy. The resulting (m0, t0) point is the first signif-
icant point of the performance profile. Second, the heuristic in-
crements the execution time of the previous significant point 
(henceforth referred to a tn-1) by α% to determine the execution 
time of the current significant point (tn= tn-1+α%). Third, the heu-
ristic identifies a subset of the samples, out of all the samples it 
has taken thus far, on which to perform a linear regression analy-
sis for determining if it already knows the metric value of the 
current significant point (i.e., what mn would yield an execution 
time of tn) within the required β% accuracy. One way to pick this 
subset would be to consider only samples with an execution time 
between tn-1 and tn+1 (a more robust approach is discussed in the 

following paragraph). Fourth, if there are not enough samples to 
determine the current significant point, the heuristic measures 
another sample and the process repeats. One way the heuristic 
could determine the metric value to sample would be to randomly 
pick a metric within the range between mn-1 and the metric of the 
first sample that has an execution time greater than tn+1 (a more 
robust approach is discussed in the next paragraph). Lastly, once 
the heuristic has enough samples to determine the current signifi-
cant point within β% accuracy, the heuristic appends the signifi-
cant point (mn, tn) to the performance profile and the process re-
peats with the next significant point. The heuristic completes once 
the linear regression analysis reveals that the current significant 
point would have a metric value greater-than the upper bound. 

The procedure of selecting samples for the linear regression 
analysis, used in steps three and four of the previous discussion, 
made the assumption that samples are non-decreasing with in-
creasing metric, which is generally not true as there is often some 
variance in execution time. A more robust approach is to not filter 
out samples based on their execution time alone, but instead filter 
based on the regression of the samples. To perform this filtering, 
the heuristic first sorts all of the samples in ascending metric or-
der, finds the first sample with a metric greater-than or equal to 
the previous significant point’s metric (mn-1), and inserts that 
sample into a set S. Second, the heuristic inserts the next two 
samples, in sorted increasing metric order, also into S. Three sam-
ples are initially required to avoid a non-trivial linear regression 
analysis. Third, the heuristic performs a linear regression analysis 
on the samples in S and calculates the execution time that the 
regression line has for the largest metric in S, which is also the 
last sample in S as the samples are sorted. Fourth, if this calcu-
lated execution time is less-than tn+1 then the heuristic adds the 
next sample to S, also in increasing metric order, and repeats. 
Lastly, if the calculated execution time is greater-than or equal to 
tn+1 then the process is complete. By filtering based on the regres-
sion, the susceptibility of the heuristic to the variance inherent in 
the execution time of individual samples is reduced and the entire 
process becomes more robust. 

Although a complete evaluation of the performance profile 
creation heuristic is outside the scope of this paper, we summarize 
the results as follows. In a test involving twelve different imple-
mentations having  a variety of time complexities, with prediction 
parameters set to α% = β% = 5%, the heuristic on average re-
quired only 374 samples and created a performance profile with 
an average estimation error of 5.84% (calculated using 250 ran-
dom combinations of input parameters for each implementation). 

Figure 4. Illustration of performance profile generation.



In fact, five of the twelve implementations had a prediction error 
of less than 1%, with only one of the implementations having an 
error of greater than 12%. Additionally, the tests showed that 
when the prediction parameters were set to α% = β% = 50% (a 
10x increase in allowed error), the average number of samples 
dropped to 52, resulting in a 6x speedup of the heuristic, yet the 
average estimation error increased only to 6.1%. 

4.3 Performance Profile Stabilization 

Because dependent implementations internally call elastic func-
tions, their performance profiles are dependent on the perfor-
mance profiles of the fastest implementation of each called elastic 
function. This interdependence results in performance profiles that 
may improve (i.e., are unstable) after every iteration of the im-
plementation planning algorithm. For example, if an updated per-
formance profile reveals a quicker implementation for sorting 
10,000 elements, this would improve the execution time and 
change the resulting performance profile for any dependent im-
plementation of any elastic function that happens to internally call 
a sort for 10,000 elements. 

Implementation planning iterates until the performance pro-
files show no improvement, which we refer to as profile stabiliza-
tion. An upper bound on the number of iterations required for 
stabilization is equal to the deepest call-stack achievable by the 
dependent implementations (regardless of which elastic functions 
are actually called). In practice, the profiles often stabilize after 
only a few iterations due to dependent implementations being 
used only to parallelize the elastic function, and independent im-
plementations being used to actually perform the computation on 
individual resources. As a result, the dependent implementation 
call stack is only a few levels deep reflecting only the partitioning 
required by the elastic function. For the evaluated applications, 
the profiles stabilized after only three iterations. 

4.4 Limitations 

The main limitations of the implementation planning algorithm 
correspond to difficulties in creating an effective adapter for an 
implementation. First, an implementation must provide a way to 
map a metric to input parameters. Implementations that are not 
deterministic or exhibit widely varying execution times are not 
suitable. Second, architecture specific effects may reduce the ac-
curacy of the performance profiles. Cache flushing, data align-
ment, and CPU pre-emption will add a level of variation to execu-
tion time measurements. However, in most cases these variations 
are relatively small and can be ignored. Third, some performance 
profiles will have reduced accuracy for corner cases. Corner cases 
are small subsets of input parameter combinations to an imple-
mentation that force the execution time to not follow the general 
trend. For example, a Quick Sort implementation exhibits an algo-
rithmic time complexity of O(n log n) for randomly distributed 
data but O(n2) for already sorted data, where ‘n’ is the number of 
elements to sort. In this case, a performance profile generated 
using randomly distributed data would have a large percent error 
if used to estimate the execution time for sorting already sorted 
data. However, elastic computing alleviates the affect of corner 
cases by enabling the designer to specify usage assumptions, such 
as by having separate interfaces for sorting randomly distributed 
data and sorting mostly sorted data. 

5. Elastic Computing System 

The elastic computing system, illustrated in Figure 5, serves two 
main purposes. First, when an application invokes an elastic func-
tion, the elastic computing system analyzes the current available 

resources and invocation parameters of the elastic function, and 
then selects the fastest implementation based on the performance 
profiles from implementation planning. Second, the elastic com-
puting system provides runtime services (e.g., resource allocation, 
device abstraction, and communication), to support the implemen-
tations until the elastic function is complete. 

The elastic computing system is invoked whenever an applica-
tion or a dependent implementation calls an elastic function via 
one the function’s interfaces. When an application calls an elastic 
function, the elastic computing system will by default allocate all 
available resources to that elastic function, although the applica-
tion designer has the option to explicitly state which resources to 
use. When a dependent implementation calls an elastic function, 
the implementation itself allocates a subset of its resources to use 
for that call.  

With the combination of the elastic function invocation para-
meters, the list of resources, and the corresponding interface used 
by the application, the elastic computing system determines the 
fastest implementation for the current situation. The elastic com-
puting system determines the fastest implementation for an elastic 
function by computing the estimated execution time of each can-
didate implementation and selecting the fastest. Only the imple-
mentations that support the corresponding elastic function inter-
face and that can execute on a subset of the available resources are 
considered (e.g., the elastic computing system cannot select an 
FPGA implementation if an FPGA is not available). For each of 
those implementations, the corresponding performance profile is 
used to estimate the execution time given the actual input parame-
ters of the interface’s invocation. If a performance profile does not 
contain a significant point that corresponds to the current invoca-
tion parameters, the elastic computing system uses linear interpo-
lation to estimate the execution time. 

After selecting the fastest implementation, the elastic compu-
ting system executes the implementation within its own execution 
context, which defines the group of resources allocated for that 
implementation. The resources are categorized into two types: 
primary and secondary. Primary resources are controlled by the 
elastic computing system and are instructed of which implementa-
tion to execute. With the current version of the elastic computing 
system, only CPU’s can be primary resources, although the 
framework could be extended to consider other resources. Sec-
ondary resources (e.g., FPGA’s) are associated with the execution 
context but are not directly controlled. Instead, the implementa-
tion itself, running on the primary resources, has the option to take 
control of any secondary resources within its same execution con-
text (e.g., an implementation running on a CPU instructing an 
FPGA to perform some computation). 

Before executing a selected implementation, the elastic com-
puting system first sets up the execution context and then starts 
the implementation’s execution on all of the primary resources. 
Each primary resource executes the same implementation. All of 
the invocation parameters are passed into the implementation, as 
well as an extra parameter that specifies the execution context. It 
is through the execution context parameter that the different in-
stances of the implementation can communicate with each other. 
In this way, the implementation running on the primary resources 
are similar to a single-instruction-multiple-data (SIMD) function. 
Additionally, the execution context is similar to an MPI Commu-
nicator. 

When dependent implementations internally invoke an elastic 
function call, the implementation has the option to partition the 
execution context into multiple sub-contexts. Each sub-context is 
independent of each other and can execute different elastic func-
tions and/or pass different parameters. It is through this mechan-



ism that the elastic computing system allows task-level paral-
lelism. 

The elastic function is complete when the outermost imple-
mentation finishes. At this point, the elastic computing system 
returns control to the originating application, which resumes ex-
ecution. 

Figure 5 illustrates an example of the elastic computing sys-
tem, showing the independent implementations selected for a 
sorting elastic function (details regarding execution contexts and 
dependent implementations are omitted for brevity). When the 
application executes the sort() interface function, the interface 
invokes the elastic computing system, which searches for the fast-
est implementation for an input size of 10,000 and available re-
sources consisting of two CPU’s and one FPGA. The elastic com-
puting system uses the performance profiles of the candidate im-
plementations and determines that the fastest implementation is a 
dependent implementation. The dependent implementation first 
partitions the input using a CPU and then invokes two additional 
elastic sorting functions, executing in parallel, to sort the parti-
tioned data. For one of those functions, the elastic computing 
system determines the fastest implementation is a Quick Sort 
implementation. For the other function, the elastic computing 
system selects another dependent implementation that first splits 
the data and then uses Insertion Sort running on a CPU and Merge 
Sort running on an FPGA to sort the split data. The elastic compu-
ting system then selects a Merge implementation to merge the 
results from the Insertion Sort and FPGA Merge Sort. Finally, the 
outer-most dependent implementation executes a Combine im-
plementation to combine the results into the final sorted output. 
The logical execution, ignoring timing, is shown on the right side 
of the figure. Note that all of the information used to determine 
the fastest implementation is saved in the performance profiles 
from the implementation planning step.  

6. Usage Scenarios 

The main target for elastic computing is mainstream, non-device-
expert application designers who are solely concerned with speci-
fying functionality and often lack the expertise required to design 
efficient functions for multi-core heterogeneous systems. Motivat-
ing examples include domain scientists, such as computational 
biologists/chemists, who commonly write applications in 
C/Fortran and MPI, and would like to use multi-core heterogene-

ous systems without becoming experts in FPGA’s, GPU’s, etc. 
[21]. Although elastic computing improves upon previous ap-
proaches by using multiple implementations, assuming that ap-
propriate elastic function libraries are available, application de-
signers do not need to create these implementations. In the ideal 
case, application designers would use elastic functions in the same 
way as existing, widely-used function libraries. 

Of course, there may be situations where new implementations 
need to be created either to target new hardware or provide new 
functionality. Elastic computing aids the development of new 
implementations by providing an environment for implementation 
execution and allowing an implementation to call existing elastic 
functions. As discussed in Section 5, the elastic computing system 
provides communication and resource management features to the 
implementation. Additionally, as most implementations can be 
broken up into simpler steps (e.g., a convex hull implementation 
that internally relies on sorting), the implementation could be 
coded to internally call pre-existing elastic functions, thereby 
allowing even the individual steps to benefit from elastic compu-
ting. Lastly, elastic computing provides a framework for code 
reuse by allowing any developed implementation to be simply 
included as another implementation option for an elastic function. 
As a result, the more pervasive elastic computing becomes, the 
less often new implementations or elastic functions will need to be 
created. 

We envision that elastic function libraries could potentially be 
created for different applications domains, where implementations 
(and corresponding adapters) of each elastic function are provided 
by several potential sources. Device vendors for specialized de-
vices are one likely source for implementations, because by enabl-
ing transparent usage of their corresponding devices via elastic 
functions, those devices could potentially become useable by new 
markets (e.g., mainstream designers). For example, Xilinx could 
attract software designers by enabling transparent usage of their 
FPGA’s via elastic function implementations for functionality 
common to specific domains. Third-party library designers such 
as Rapidmind [20], who already target specialized devices, could 
also provide implementations of elastic functions for numerous 
devices. Finally, open-source projects could potentially establish a 
standardized elastic function library that could be extended with 
implementations from all participants. In this situation, experts 
from different domains could provide implementations optimized 

Figure 5. When an application executes an elastic function, the elastic computing system uses the performance profiles from implementa-
tion planning to select and execute the fastest implementation for the available resources and input parameters. 



for different situations and devices. With the ability of the elastic 
computing system to automatically identify fast implementations, 
mainstream application designers could transparently exploit an 
implementation specialized for any given situation without any 
knowledge of the actual implementation or situation. 

6.1 Summary of Advantages 

Transparency Elastic computing achieves transparency of im-
plementation and architecture, enabling non-expert designers to 
take advantage of powerful multi-core heterogeneous systems. 
Elastic computing also achieves a more transparent integration 
into existing tool flows compared to new language approaches 
that have largely been resisted due to the inconvenience of mod-
ifying well-established tool flows. In most cases, taking advantage 
of elastic computing is a simple matter of replacing pre-existing 
function calls with their elastic function equivalents. 

Portability Unlike existing applications, which without modifi-
cations typically do not improve in performance when executed 
on a system with more or different types of resources, elastic 
computing invisibly selects/creates implementations that can util-
ize extra resources to improve performance. 

Adaptability Elastic computing can adapt the implementation of 
a function to runtime parameters and changes in resources. Elastic 
computing has the flexibility to take advantage of as many or as 
few computing resources as it deems would be most efficient. For 
embedded systems, elastic computing could be extended to auto-
matically choose power-efficient implementations and avoid using 
certain computing resources when battery life is low. For space 
systems, elastic computing could potentially avoid using compu-
ting resources that have been flagged as being damaged or dis-
abled. Previous work has implemented similar behavior manually, 
but has required significant designer effort and device expertise. 

6.2 Summary of Limitations 

The main limitation of elastic computing is that improvement in 
design productivity depends on the percentage of code that can be 
defined using elastic functions. Ideally, an elastic function library 
combined with vendor-provided implementations could provide 
most designers with the majority of functionality they require.  

Potential limitations of implementation planning include the 
time required for implementation planning to complete and the 
accuracy of the resulting performance profiles. Implementation 
planning requires several executions of each implementation 
which may require a considerable amount of time, but this process 
is only required once for a system and can be amortized over its 
entire lifetime. Implementation planning creates performance 
profiles by empirically measuring the execution time of imple-
mentations executing on sample input data. The empirical mea-
surements reflect system effects, such as cache size and memory 
latency, but cannot account for some run-time issues, such as non-
representative input data and resource contention. However, these 
effects are normally not significant enough to affect run-time 
performance as the elastic computing system does not make deci-
sions based on absolute execution time (i.e., “how long will this 
implementation take?”) but only relative execution time (i.e., 
“which implementation is the fastest?”). None the less, reducing 
these errors is an on-going research challenge. 

Another potential limitation is the runtime overhead of imple-
mentation selection by the elastic computing system. As shown in 
the results, the performance improvement of using an elastic func-
tion normally greatly outweighs the overhead of dynamically 
determining its implementation. For elastic functions that require 

a very short execution time, the elastic computing system will 
likely immediately decide on an independent implementation, 
requiring the overhead of only a single implementation selection. 
None the less, repeated calls to elastic functions with extremely 
quick execution times could be dominated by the implementation 
selection overhead. For these cases, future work focuses on com-
pile-time analysis of the source code to replace those elastic func-
tion calls with a pre-selected implementation, eliminating all run-
time overhead. 

7. Experiments 
7.1 Experimental Setup 

To perform elastic computing experiments, we developed the 
described implementation planning and elastic computing system 
tools in addition to several elastic functions. In total, over 11,000 
lines of C++ code were required. 

We implemented a Sort elastic function, in addition to nine 
others described later, with the following independent implemen-
tations: static size-2/3/4 sort network, in-place/out-of-place inser-
tion-sort, heap-sort, quick-sort, and an FPGA-based in-place/out-
of-place merge-sort. The following dependent implementations 
were also created: in-place/out-of-place parallel/serial merge-sort 
(i.e., two sorts followed by merging the results) and in-place/out-
of-place parallel/serial quick-sort (i.e., a partition followed by two 
sorts). To enable these dependent implementations, we also 
created independent implementations for elastic functions to per-
form a partition (first-step of a quick-sort implementation) and a 
merge (last-step of a merge-sort implementation). All micropro-
cessor-based code was written in C++ and compiled using g++ 
3.4.4 with –O3 optimizations. All FPGA-based code was written 
in VHDL and compiled using Xilinx ISE 9.2i. 

We evaluated the elastic computing framework on three di-
verse systems. The first was a 3.2 GHz hyper-threaded Intel Xeon 
microprocessor with a Nallatech H101-PCIXM FPGA accelerator 
[24], which has a Xilinx Virtex IV LX100. The second was a 2.4 
GHz 16-CPU AMD Opteron 880 system (8 dual-core micropro-
cessors) with no FPGA’s. The third was a 2.4 GHz quad-core 
Intel Xeon also with no FPGA’s. 

All results represent total execution time, including elastic 
computing overhead, communication times, etc. The only over-
head not included is the configuring of the FPGA with the bitfile, 
as all VHDL code was compiled into a single bitfile that was pre-
loaded at application startup. The baseline comparisons were writ-
ten using hand-optimized serial code to represent a fair alternative 
to using elastic functions when targeting an arbitrary system. To 
ensure accuracy, each result is the average of several executions. 

7.2 Results 

Figure 6 illustrates the portability advantages of elastic computing 
for the sort elastic function with an input of 4,194,304 elements, 
running on the 16-CPU Opteron system. The baseline is a Quick 
Sort function running on a single CPU. As more resources are 
allocated, the elastic function automatically takes advantage of the 
additional computing power without any coding changes, result-
ing in a speedup of over 4x for 16 CPU’s. 

Figure 7 illustrates similar advantages of several elastic func-
tions for embedded systems, each of which includes microproces-
sor and FPGA-based independent implementations, running on 
the Xeon/Nallatech system. Sort is the previously described sort 
elastic function with an input of 4,194,304 elements. Prewitt per-
forms Prewitt edge detection on a 640x480 pixel image. Conv 
(convolution) convolves a 1 million length vector with a 256 
length vector, with each element being single-precision floating-
point. MM (matrix multiply) multiplies two 1024x1024 matrices 



using single-precision floating-point. Optical (optical flow) 
creates a two-dimensional match statistic map for a 17x17 tem-
plate in a 640x480 pixel image. In all cases, elastic computing 
enables the application to gain significant speedup, ranging from 
1.3x to 46x, by transparently taking advantage of the multiple 
cores and FPGA. The large 46x speedup of the Optical implemen-
tation is due to the FPGA exploiting a significantly larger amount 
of parallelism compared to the other examples. 

Figure 8 illustrates the adaptability of elastic computing by 
comparing the performance between the independent implementa-
tions of sort and the elastic function. The results are shown across 
different input sizes running on the Xeon/Nallatech system. For 
all possible input sizes, elastic computing either achieved the fast-
est implementation or had a minimal overhead. For input sizes 
greater than 512k, elastic computing significantly out-performed 
the individual implementations. Note that the FPGA Merge Sort 
implementation only supports input sizes less than 512k elements 
due to limited on-board memory; however, the elastic function 
can still make use of it with larger input sizes by relying on de-
pendent implementations to partition larger input sizes into mul-
tiple sub-sorts. 

Figure 9 illustrates speedups of several additional elastic func-
tions, chosen from graph analysis, computational geometry, and 
linear algebra, running on the quad-core Xeon system, compared 
to serial baselines. For each elastic function, we created a parallel 
independent implementation. MM (matrix multiply) multiplies 

two 1000x1000 matrices using single-precision floating-point. 
LCS (longest common subsequence) determines the longest com-
mon subsequence between two 2,500 character strings. FW 
(Floyd-Warshall) finds the shortest path between 1,000 vertices in 
a weighted directed graph. CPP (closest-point pair) determines 
the closest pair of points from 1,000,000 points in a two-
dimensional space. Solver solves a system of 1,000 linear equa-
tions. Inverse inverts a 1000x1000 floating point matrix. Sort is 
the previously described sorting function with 4,194,304 ele-
ments. In all cases, elastic computing transparently se-
lected/created parallel implementations for each elastic function, 
resulting in speedup that ranged from 1.8x for LCS to 3.4x for 
FW, achieving an average speedup of 2.6x.  

Note that although these speedups were obtained by using ex-
tra resources, the significance of elastic computing is that no cod-
ing modifications were required to use those resources. To our 
knowledge, no previous study has shown improved performance 
for such diverse systems without manual code modifications.  

8. Conclusions 

In this paper, we introduced a framework for elastic computing 
that is capable of separating functionality from implementation 
details, allowing application designers to more easily exploit the 
performance potential of multi-core heterogeneous systems. With 
elastic computing, the application designer simply specifies func-

Figure 6. Portability of a Sort elastic function, illustrated by in-
creasing speedup when allocated additional resources.

Figure 7. Speedups illustrating elastic computing portability for 
several elastic functions running on a hyper-threaded Intel Xeon 
system with a Nallatech H101-PCIXM FPGA accelerator. 

Figure 8. Elastic computing adaptability for a hyper-threaded 
Intel Xeon system with a Nallatech H101-PCIXM FPGA accele-
rator, showing that for all input sizes, elastic computing achieves 
the best (or near best) implementation. 

Figure 9. Elastic computing speedup on a quad-core Intel Xeon 
system for several elastic functions, compared to serial baselines.



tionality in terms of elastic functions, which the elastic computing 
framework converts into specialized implementations through a 
combination of implementation planning and the elastic compu-
ting system. We evaluated elastic computing on three diverse 
systems, showing that the framework invisibly achieved speedup 
(no coding changes were required) for different resource amounts. 
Furthermore, we showed that elastic computing can adapt to run-
time parameters, such as input size, achieving performance signif-
icantly better than the individual implementations, even with the 
overhead of the elastic computing system. Overall, elastic compu-
ting achieved significant speedup, ranging from 1.3x to 46x, with-
out any changes to the application code and without any designer 
effort. Future work includes evaluation of different resources 
(e.g., GPU’s), reduction of run-time overhead for elastic function 
calls with input parameters partially known at compile-time, and 
implementation planning for power consumption. 
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