
IEEE-ESL-MAY-11-0044

1

Abstract—Field-programmable gate arrays (FPGAs) suffer

from lower application design productivity than other devices,
which is largely due to compilation taking hours or even days.
Making FPGA compilation comparable to software compilation
is critical for continued FPGA usage due to competitive
technologies, such as graphics-processing units, that use
languages with runtime compilation models. In this paper, we
evaluate virtual reconfigurable architectures, referred to as
intermediate fabrics, which enable near-instant placement and
routing of applications for commercial FPGAs.

Index Terms—Field-programmable gate arrays, placement
and routing, productivity, virtual architectures

I. INTRODUCTION

ESPITE performance, power, and energy advantages
compared to other devices [4], field-programmable gate

array (FPGA) usage has been limited by poor application
design productivity [12]. Such productivity has resulted
largely from a requirement for low-level device expertise and
prohibitive compilation times caused by placement & routing
(PAR), which commonly requires many hours or even days.
Although numerous high-level synthesis studies have raised
abstraction levels, PAR times have largely been ignored and
are now a major productivity bottleneck that prevents
designers from using mainstream design and debugging
methodologies based on rapid compilation. Furthermore, PAR
times prevent high-level synthesis from increasingly used
languages (e.g., OpenCL) that require runtime compilation.

Intermediate fabrics (IFs) [3] were recently introduced as a
potential solution for fast FPGA compilation, providing
several orders of magnitude faster PAR compared to vendor
tools. IFs are virtual reconfigurable architectures implemented
atop commercial-off-the-shelf (COTS) FPGAs, which
designers either select from a library or custom generate to
provide an application-specialized virtual architecture that

Manuscript received May 29, 2011; accepted August 18, 2011. This work
was supported in part by the I/UCRC Program of the National Science
Foundation under Grant No. EEC-0642422. The authors gratefully
acknowledge vendor equipment and/or tools provided by Altera, Nallatech,
and Xilinx.

Greg Stitt is an assistant professor in the ECE department at the University
of Florida and is a faculty member of the NSF Center for High-Performance
Reconfigurable Computing (e-mail: gstitt@ece.ufl.edu).

James Coole is a Ph.D. student in the ECE department at the University of
Florida (e-mail: jcoole@ufl.edu).

contains appropriate resources (e.g., floating-point cores,
FFTs, filters, etc.), as opposed to mapping the application onto
possibly hundreds of thousands of fine-grained look-up-tables
(LUTs) in the physical device. Such specialization reduces
PAR input size by orders of magnitude, thus enabling fast
compilation. Although numerous coarse-grained
reconfigurable devices have similar advantages, IFs enable
designers to use COTS devices, which have significant cost
advantages. Other advantages include application portability
across devices and rapid reconfiguration that is orders of
magnitude faster than partial reconfiguration on FPGAs.

The main limitation of IFs is area and performance
overhead. Although previous work [3] showed reasonable
overhead, that study focused on specializing IFs for a single
netlist. In this paper, we evaluate a more realistic usage
scenario of a single, larger IF specialized for common image-
processing kernels. In addition, we evaluate reconfiguration of
IFs on an FPGA that does not support partial reconfiguration.

Although not appropriate for all usage cases, IFs achieved
an average PAR speedup of 700x over vendor tools. Due to a
lack of proprietary routing details for commercial devices, we
evaluated area overhead using highly pessimistic mux-based
routing resources that required 34% to 44% of an Altera
Stratix III E260. Performance overhead was only 7%.
Fortunately, FPGA vendors could directly map an IF onto
physical routing resources to eliminate much of this overhead,
which is decreasing in significance as FPGA sizes approach
one million LUTs.

II. PREVIOUS WORK

Previous work has focused on fast PAR algorithms, but
those studies either provided insufficient speedup for runtime
compilation [11], required custom devices [14], or were
intended for specific usage scenarios (e.g., runtime
reconfiguration [1]). Coarse-grained reconfigurable
architectures (e.g., [6]) also enable fast PAR, but require
specialized devices. IFs complement these approaches by
enabling rapid PAR on COTS FPGAs. A recent approach [9]
introduced pre-placed and routed hard macros that provided
10x-50x PAR speedup, with a 2x-4x performance overhead.
IFs provide faster PAR and less performance overhead [3],
but are generally less flexible due to the requirement for an
appropriate fabric. Hard macros could potentially be
combined with IFs for rapidly generating specialized fabrics.

IFs are conceptually similar to other overlay networks [8]

Intermediate Fabrics: Virtual Architectures for
Near-Instant FPGA Compilation

Greg Stitt and James Coole, Member, IEEE

D

IEEE-ESL-MAY-11-0044

2

and virtual architectures [13]. Such approaches implement
custom architectures atop FPGAs, but do so for purposes
other than rapid compilation, portability, or partial
reconfiguration.

III. INTERMEDIATE FABRICS

A. Architecture

Although IFs can implement architectures specialized for
any domain, in this paper, we use an architecture based on
common characteristics of image-processing circuits, as
shown in Fig. 1. This architecture consists of a controller and
a pipelined datapath that accepts a window – a subset of the
image – as input every cycle, and generates an output every
cycle after some initial latency. Because pipelines require high
memory bandwidth, circuits commonly use a window
generator [5] to exploit data reuse between consecutive
windows. The architecture also uses address generators and
memory controllers to stream data to and from memories.

Many image-processing circuits use this architecture with
different pipelined datapaths. Therefore, for the IF in this
paper, we implement a reconfigurable version of the
architecture in Fig. 1, focusing mainly on creating a
reconfigurable fabric for pipelined datapaths, as shown in Fig.
2. Although the fabric could include any resource, we chose
resources common to image-processing kernels: multipliers,
subtractors with an optional absolute-value output, adders, a
square root, and delay components that act as configurable
shift registers. For the total size, we chose 128 inputs, 5 delays
capable of delaying up to 9000 cycles, 64 multipliers, 64
subtractors, 63 adders, 1 square root, and a single output. We
chose this size to be large enough to implement numerous
kernels while using a mid-sized Stratix III E260 FPGA. All
operations use 16-bit fixed-point, signed arithmetic. To
implement the virtual fabric on a physical FPGA, we specified
the computational resources in VHDL. We implemented the
delays using block RAMs and the square root using an Altera-
provided IP core.

The IF routing resources are similar to island-style FPGAs,
with connections boxes to connect resources to virtual routing
tracks, and planar switch boxes to connect tracks. The IF uses
two 16-bit bidirectional tracks in each row and column.

Ideally, we would implement the IF routing resources
directly on an FPGA’s physical routing resources. However,
because such resources are proprietary, we instead perform a
highly pessimistic evaluation using mux-based virtual routing

resources. We implement switch boxes as shown in Fig. 3(a),
where each bidirectional, virtual track becomes two
unidirectional wires with a mux defining which tracks define
each output. Each mux has a configuration register (not
shown) that controls the mux select, as determined by PAR. In
addition, each output has a register to pipeline the
interconnect, which was necessary to achieve clock
frequencies comparable to FPGAs with the pessimistic
evaluation. Considering the minimal performance overhead, it
is likely that a direct mapping onto physical routing resources
would not need pipelined interconnect. Note that pipelining is
possible because we specialize the IF for pipelined datapaths.
We implement each track as a mux that defines a sink by
selecting from each source. Due to the numerous routing
resources, these muxes are the main source of the evaluated IF
overhead. To load a bitfile, the IF uses a configuration shift
register that requires only 9,234 bits, compared to several
megabytes for commercial FPGAs.

Pipelined interconnect normally requires complicated PAR
algorithms [7] to ensure related nets have the same routing
delays. To simplify the problem, we add realignment registers
to the inputs of each computational resource, as shown in Fig.
3(b). The realignment registers are variable shift registers that
delay a signal up to 8 cycles. As long as related nets are not
misaligned by more than 8 cycles, PAR can use traditional
algorithms. For delays greater than 8 cycles, the netlist can be
altered to explicitly use the IF delay components.

The IF uses the window generator from [5], which buffers
image rows in block RAMs. The window generator
continually shifts buffered data into shift registers to create a
new window each cycle. To add reconfigurabilty to the

Delay *

Delay -, ||

+Delay

Delay*

Delay-, ||

+ SQRT

Inputs

. . .

. . .

. . .

Inputs Inputs Inputs

Switch box

Connection box

Fig 2. Overview of the island-style datapath fabric used for the evaluated
image-processing kernels. Each row has 66 columns.

Addr Gen

Window
Generator

RAM

RAM

Mem Ctrl

DatapathControl

Addr Gen Mem Ctrl

Fig 1. Common circuit structure for pipelined image-processing kernels.

Reg

Reg

R
e

g

R
eg

+

.. ..

Connection Box

Realignment
registers

delay_sel delay_sel

a) b)

 Fig 3. (a) RTL implementation of the virtual switchbox for a single track per
channel. (b) Realignment registers for adjusting routing latencies.

IEEE-ESL-MAY-11-0044

3

window generator, we added padding to support any image
size up to 1080x1920. The generator also supports any
window size up to 8x8, but requires manual padding in
software due to application-specific padding requirements.

IF address generators and memory controllers are the same
as a normal circuit. The IF also includes a PCIe controller (not
shown) to communicate with a host processor, although we
could use any interface (e.g., those used by soft processors).

The controller for the IF is simplified compared to more
general-purpose circuits due to the specialization for pipelined
image-processing kernels. Pipelined circuits often have simple
control that first enables the address generators, stalls the
pipeline whenever inputs are not available or when the output
memory buffer is full, and signifies when a circuit has
completed execution. To implement this control, the IF uses a
state machine with registers that control input sizes.

B. Tools

To implement the IF on the FPGA, we created an IF
generation tool that reads an XML description of the fabric
and outputs synthesizable VHDL.

To compile an application onto the IF, we created IF PAR
tools. The placer uses VPR [2] with modified simulated
annealing parameters that we empirically determined to be
effective for this level of granularity. The router uses
Pathfinder [10], which does not support pipelined routing, but
as mentioned earlier, the realignment registers allow the router
to ignore nets that are misaligned by 8 or less cycles.

Currently, we have no synthesis tools for IFs and therefore
manually created technology-mapped IF netlists. We could
potentially synthesize from any HDL, and also plan to port
OpenCL synthesis tools onto IFs for runtime compilation.

IV. LIMITATIONS

IFs are not intended for all usage scenarios due to overhead
that may be too significant for small embedded systems or
large high-performance systems. Fortunately, rapidly
increasing FPGA sizes continually lessen the impact of this
overhead. Furthermore, by mapping IFs directly to physical
routing resources, device vendors can potentially eliminate all
muxes used for routing, which represents almost all overhead.

Flexibility is also a potential limitation. A custom circuit
can use any mixture of operators and precisions. An IF circuit
can also include any mixture, but it is unlikely that highly
specialized IFs would exist in a predetermined library. In this
situation, a designer could create a custom IF as we did by
simply defining an appropriate XML fabric description. While
this approach does require a single FPGA PAR iteration to
implement the IF, that PAR time is amortized over the lifetime
of the IF. To reduce the time for custom IF generation, we
plan to investigate rapid IF generation via bitfile relocation.

Certain application domains will likely not benefit from IFs.
For example, control-intensive applications clearly cannot be
implemented on the IF used in this paper. We could create an
IF for control applications, but fast IF PAR comes from coarse
granularities. Fortunately, control circuits tend to have small

compilation times even without IFs.

V. EXPERIMENTS

In this section, we evaluate the discussed IF using three
common image-processing kernels: 2D convolution, Sobel
edge detection, and sum-of-absolute differences (SAD). 2D
convolution multiplies each window of an image with a
corresponding kernel (e.g., set of coefficients) and then
accumulates the products. Sobel edge detection is a common
filter that first performs two 3x3 convolutions, squares the
result of each, adds the squares, and then takes the square
root. SAD is used for determining image similarity by
summing the absolute differences of each window and image
pixel. For each kernel, we use a 1080x1920 image that
software has converted to 16-bit grayscale. For 2D
convolution, we evaluate window sizes ranging from 3x3 to
8x8. Sobel uses 3x3 windows and SAD uses 8x8 windows
(although other sizes are also applicable). For this IF, the
window size is limited to 8x8 because of the 128 inputs.

In addition to the previously described IF, we also created a
32-bit floating-point IF that was limited to 5x5 windows due
to the larger floating-point area requirements.

For each example, we compared an IF circuit with custom
VHDL. For synthesis, we used Quartus II 9.1 SP2, running on
a quad-core 2.66 MHz Intel Xeon W3520 with 12 GB of
RAM. The targeted board was a GiDEL PROCStarIII PCIe
card with an Altera Stratix III E260 FPGA. The board was
attached to a 2.26 GHz quad-core Intel E5520 that we used for
pre-processing and data transfer. To compare performances,
we calculated speedup compared to software for each kernel,
which we compiled using g++ 4.4.3 with -O3 optimizations.

Table 1 compares the IF and direct FPGA implementations.
As shown in the left column, IF PAR times were 700x faster
on average. The longest IF PAR time was only 5.3 seconds.
PAR speedup for the floating-point examples was larger due
to a larger reduction in PAR input size.

Performance overhead is shown in the middle of Table 1. IF
clock frequencies are shown at the bottom (124 MHz for the
fixed-point IF and 114 MHz for the floating-point IF). The
average IF clock overhead was 17%, but the average
performance overhead was only 7% due to slow PCIe data
transfers that were independent of this clock. Actual speedup
compared to software averaged 8.3x for the IF and 8.8x for
the direct implementations. Sobel was slower on the FPGA in
all cases due to PCIe transfer overhead.

The right column of Table 1 shows area utilization of the
direct FPGA implementations. The applications ranged from
using 13% to 25% of the LUTs. The fixed-point and floating-
point IFs used 57% and 59%, respectively. Although the
pessimistic mux-based IF required 2.4x to 4.4x more area, the
extra area is not necessarily overhead because some of the
resources could be used for other computation (e.g., larger IF
circuits). The LUT percentages that could not be used for
computation (i.e., muxes for routing resources, configuration
registers) were 43% for the fixed-point IF and 34% for the

IEEE-ESL-MAY-11-0044

4

floating-point IF, due to the smaller fabric size. As mentioned
earlier, by mapping the IF directly onto physical routing
resources, all of the muxes could be eliminated, which
represents almost all of the overhead.

The fixed-point IF bitfile used 9,234 bits. The floating-
point bitfile was 3,600 bits because of the smaller fabric size.
We stored the bitfiles in 128-bit wide block RAM, which
enabled IF reconfiguration in 28 to 72 cycles. Partial
reconfiguration on commercial devices typically takes on the
order of tens of milliseconds. Furthermore, the IF
reconfiguration occurred on an Altera device that does not
support partial reconfiguration.

Fast reconfiguration also counteracts area overhead by
enabling multiple circuits to be swapped into the IF, as
opposed to implementing the circuits in a single FPGA bitfile.
Assuming an IF provides all necessary resources, the number
of circuits is limited only by the amount of memory. The
evaluated Stratix III E260 has more than 15 million bits of
memory, which supports more than 1,600 IF circuits.

VI. CONCLUSIONS

In this paper, we evaluated an intermediate fabric for
common image-processing kernels, which enabled placement
and routing speedups averaging 700x compared to vendor
tools. The main limitation is overhead, which was a modest
7% for performance, and a more significant 34% to 44% for
area. However, FPGA vendors could eliminate such area
overhead by directly mapping virtual routing resources onto
physical FPGA resources. Finally, we showed that
intermediate fabrics enable fast partial reconfiguration, even
on devices lacking physical support.

REFERENCES
[1] P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M. Shelburne, J.

Suris, M. Bucciero, and J. Graf, “Wires on demand: Run-time
communication synthesis for reconfigurable computing,” in FPL ’97:
Proc. Int. Workshop on Field-Programmable Logic and Applications,
2007, pp. 513–516.

[2] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in FPL ’97: Proc. Int. Workshop on Field-
Programmable Logic and Applications, 1997, pp. 213–222.

[3] J. Coole, G. Stitt. “Intermediate fabrics: virtual architectures for circuit
portability and fast placement and routing,” In CODES/ISSS’10: Proc.
IEEE/ACM/IFIP Int. Conference on Hardware/Software Codesign and
System Synthesis, 2010, pp. 13-22.

[4] A. DeHon, “The density advantage of configurable computing,”
Computer, vol. 33, no. 4, pp. 41–49, 2000.

[5] Y. Dong, Y. Dou, and J. Zhou, “Optimized generation of memory
structure in compiling window operations onto reconfigurable
hardware,” in ARC ’07: Proc. Int. Symp. on Applied Reconfigurable
Computing, 2007, pp. 110–121.

[6] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid - reconfigurable
pipelined datapath,” in FPL ’96: Proc. Int. Workshop on Field-
Programmable Logic and Applications, 1996, pp. 126–135.

[7] K. Eguro and S. Hauck, “Armada: timing-driven pipeline-aware routing
for FPGAs,” in FPGA ’06: Proc. ACM/SIGDA Int. Symp. on Field
Programmable Gate Arrays, 2006, pp. 169–178.

[8] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, and A. DeHon, “Packet-switched vs. time-multiplexed
FPGA overlay networks,” in FCCM ’06: Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines, 2006, pp. 205–216.

[9] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, B.
Hutchings, “HMFlow: Accelerating FPGA compilation with hard
macros for rapid prototyping,” in FCCM’11: Proc. IEEE Symp. on
Field-Programmable Custom Computing Machines, 2011.

[10] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based
performance-driven router for FPGAs,” in FPGA ’95: Proc. ACM Int.
Symp. on Field Programmable Gate Arrays, 1995, pp. 111–117.

[11] C. Mulpuri and S. Hauck, “Runtime and quality tradeoffs in FPGA
placement and routing,” in FPGA ’01: Proc. ACM/SIGDA Int. Symp. on
Field Programmable Gate Arrays, 2001, pp. 29–36.

[12] B. E. Nelson, M. J. Wirthlin, B. L. Hutchings, P. M. Athanas, and S.
Bohner, “Design productivity for configurable computing,” in ERSA
’08: Proc. Int. Conference on Engineering of Reconfigurable Systems
and Algorithms, 2008, pp. 57–66.

[13] S. Shukla, N. W. Bergmann, and J. Becker, “Quku: A two-level
reconfigurable architecture,” in ISVLSI ’06: Proc. IEEE Computer
Society Annual Symp. on Emerging VLSI Technologies and
Architectures, 2006.

[14] F. Vahid, G. Stitt, and R. Lysecky, “Warp processing: Dynamic
translation of binaries to FPGA circuits,” Computer, vol. 41, no. 7, pp.
40–46, July 2008.

TABLE I
SUMMARY OF PLACE AND ROUTE TIMES, PERFORMANCE OVERHEAD, AND AREA UTILIZATION (% OF TOTAL RESOURCES)

IF Quartus 9.1 Speedup Clk FPGA
Clk

Overhead
Speedup

IF
Speedup
FPGA

Perf.
Overhead LUT REG DSP

Conv 3x3 0.9s 14min 48s 943 150 MHz 17% 3.2 3.5 9% 13% 14% 1%

Conv 4x4 1.5s 15min 06s 613 148 MHz 16% 5.9 6.3 6% 13% 14% 2%

Conv 5x5 2.1s 15min 33s 447 146 MHz 15% 8.0 8.5 6% 13% 14% 4%

Conv 6x6 3.0s 15min 41s 312 151 MHz 18% 11.1 11.9 7% 13% 15% 5%

Conv 7x7 4.0s 16min 19s 243 139 MHz 11% 14.7 15.5 5% 13% 15% 8%

Conv 8x8 5.3s 16min 08s 184 146 MHz 15% 18.8 20.0 6% 13% 15% 8%

Sobel 4.2s 14min 56s 214 154 MHz 19% 0.53 0.58 9% 13% 14% 1%

SAD 8x8 5.3s 16min 51s 190 143 MHz 13% 18.6 19.5 5% 15% 16% 0%

Conv 5x5 (float) 1.7s 25min 28s 919 148 MHz 23% 5.2 5.5 5% 21% 29% 13%

Sobel (float) 1.5s 18min 58s 759 144 MHz 21% 0.32 0.36 11% 16% 19% 3%

SAD 5x5 (float) 0.6s 30min 43s 2880 140 MHz 19% 5.3 5.5 4% 25% 38% 0%

Average 2.7s 18min 14s 700 146 MHz 17% 8.3 8.8 7% 15% 18% 4%

IF 124 MHz 57% 58% 17%

IF (float) 114 MHz 59% 61% 13%

Place and Route Times Performance Area Utilization

