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Abstract—Field-programmable gate arrays (FPGAs) suffer 

from lower application design productivity than other devices, 
which is largely due to compilation taking hours or even days.  
Making FPGA compilation comparable to software compilation 
is critical for continued FPGA usage due to competitive 
technologies, such as graphics-processing units, that use 
languages with runtime compilation models. In this paper, we 
evaluate virtual reconfigurable architectures, referred to as 
intermediate fabrics, which enable near-instant placement and 
routing of applications for commercial FPGAs. 
 

Index Terms—Field-programmable gate arrays, placement 
and routing, productivity, virtual architectures  
 

I. INTRODUCTION 

ESPITE performance, power, and energy advantages 
compared to other devices [4], field-programmable gate 

array (FPGA) usage has been limited by poor application 
design productivity [12]. Such productivity has resulted 
largely from a requirement for low-level device expertise and 
prohibitive compilation times caused by placement & routing 
(PAR), which commonly requires many hours or even days. 
Although numerous high-level synthesis studies have raised 
abstraction levels, PAR times have largely been ignored and 
are now a major productivity bottleneck that prevents 
designers from using mainstream design and debugging 
methodologies based on rapid compilation. Furthermore, PAR 
times prevent high-level synthesis from increasingly used 
languages (e.g., OpenCL) that require runtime compilation.  

Intermediate fabrics (IFs) [3] were recently introduced as a 
potential solution for fast FPGA compilation, providing 
several orders of magnitude faster PAR compared to vendor 
tools. IFs are virtual reconfigurable architectures implemented 
atop commercial-off-the-shelf (COTS) FPGAs, which 
designers either select from a library or custom generate to 
provide an application-specialized virtual architecture that 
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contains appropriate resources (e.g., floating-point cores, 
FFTs, filters, etc.), as opposed to mapping the application onto 
possibly hundreds of thousands of fine-grained look-up-tables 
(LUTs) in the physical device. Such specialization reduces 
PAR input size by orders of magnitude, thus enabling fast 
compilation. Although numerous coarse-grained 
reconfigurable devices have similar advantages, IFs enable 
designers to use COTS devices, which have significant cost 
advantages. Other advantages include application portability 
across devices and rapid reconfiguration that is orders of 
magnitude faster than partial reconfiguration on FPGAs.  

The main limitation of IFs is area and performance 
overhead. Although previous work [3] showed reasonable 
overhead, that study focused on specializing IFs for a single 
netlist. In this paper, we evaluate a more realistic usage 
scenario of a single, larger IF specialized for common image-
processing kernels. In addition, we evaluate reconfiguration of 
IFs on an FPGA that does not support partial reconfiguration.  

Although not appropriate for all usage cases, IFs achieved 
an average PAR speedup of 700x over vendor tools. Due to a 
lack of proprietary routing details for commercial devices, we 
evaluated area overhead using highly pessimistic mux-based 
routing resources that required 34% to 44% of an Altera 
Stratix III E260. Performance overhead was only 7%. 
Fortunately, FPGA vendors could directly map an IF onto 
physical routing resources to eliminate much of this overhead, 
which is decreasing in significance as FPGA sizes approach 
one million LUTs.  

II. PREVIOUS WORK 

Previous work has focused on fast PAR algorithms, but 
those studies either provided insufficient speedup for runtime 
compilation [11], required custom devices [14], or were 
intended for specific usage scenarios (e.g., runtime 
reconfiguration [1]). Coarse-grained reconfigurable 
architectures (e.g., [6]) also enable fast PAR, but require 
specialized devices. IFs complement these approaches by 
enabling rapid PAR on COTS FPGAs. A recent approach [9] 
introduced pre-placed and routed hard macros that provided 
10x-50x PAR speedup, with a 2x-4x performance overhead. 
IFs provide faster PAR and less performance overhead [3], 
but are generally less flexible due to the requirement for an 
appropriate fabric. Hard macros could potentially be 
combined with IFs for rapidly generating specialized fabrics. 

IFs are conceptually similar to other overlay networks [8] 
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and virtual architectures [13]. Such approaches implement 
custom architectures atop FPGAs, but do so for purposes 
other than rapid compilation, portability, or partial 
reconfiguration. 

III. INTERMEDIATE FABRICS 

A. Architecture 

Although IFs can implement architectures specialized for 
any domain, in this paper, we use an architecture based on 
common characteristics of image-processing circuits, as 
shown in Fig. 1. This architecture consists of a controller and 
a pipelined datapath that accepts a window – a subset of the 
image – as input every cycle, and generates an output every 
cycle after some initial latency. Because pipelines require high 
memory bandwidth, circuits commonly use a window 
generator [5] to exploit data reuse between consecutive 
windows. The architecture also uses address generators and 
memory controllers to stream data to and from memories. 

Many image-processing circuits use this architecture with 
different pipelined datapaths. Therefore, for the IF in this 
paper, we implement a reconfigurable version of the 
architecture in Fig. 1, focusing mainly on creating a 
reconfigurable fabric for pipelined datapaths, as shown in Fig. 
2. Although the fabric could include any resource, we chose 
resources common to image-processing kernels: multipliers, 
subtractors with an optional absolute-value output, adders, a 
square root, and delay components that act as configurable 
shift registers. For the total size, we chose 128 inputs, 5 delays 
capable of delaying up to 9000 cycles, 64 multipliers, 64 
subtractors, 63 adders, 1 square root, and a single output. We 
chose this size to be large enough to implement numerous 
kernels while using a mid-sized Stratix III E260 FPGA. All 
operations use 16-bit fixed-point, signed arithmetic. To 
implement the virtual fabric on a physical FPGA, we specified 
the computational resources in VHDL. We implemented the 
delays using block RAMs and the square root using an Altera-
provided IP core. 

The IF routing resources are similar to island-style FPGAs, 
with connections boxes to connect resources to virtual routing 
tracks, and planar switch boxes to connect tracks. The IF uses 
two 16-bit bidirectional tracks in each row and column.  

Ideally, we would implement the IF routing resources 
directly on an FPGA’s physical routing resources. However, 
because such resources are proprietary, we instead perform a 
highly pessimistic evaluation using mux-based virtual routing 

resources. We implement switch boxes as shown in Fig. 3(a), 
where each bidirectional, virtual track becomes two 
unidirectional wires with a mux defining which tracks define 
each output. Each mux has a configuration register (not 
shown) that controls the mux select, as determined by PAR. In 
addition, each output has a register to pipeline the 
interconnect, which was necessary to achieve clock 
frequencies comparable to FPGAs with the pessimistic 
evaluation. Considering the minimal performance overhead, it 
is likely that a direct mapping onto physical routing resources 
would not need pipelined interconnect. Note that pipelining is 
possible because we specialize the IF for pipelined datapaths. 
We implement each track as a mux that defines a sink by 
selecting from each source. Due to the numerous routing 
resources, these muxes are the main source of the evaluated IF 
overhead. To load a bitfile, the IF uses a configuration shift 
register that requires only 9,234 bits, compared to several 
megabytes for commercial FPGAs. 

Pipelined interconnect normally requires complicated PAR 
algorithms [7] to ensure related nets have the same routing 
delays. To simplify the problem, we add realignment registers 
to the inputs of each computational resource, as shown in Fig. 
3(b). The realignment registers are variable shift registers that 
delay a signal up to 8 cycles. As long as related nets are not 
misaligned by more than 8 cycles, PAR can use traditional 
algorithms. For delays greater than 8 cycles, the netlist can be 
altered to explicitly use the IF delay components. 

The IF uses the window generator from [5], which buffers 
image rows in block RAMs. The window generator 
continually shifts buffered data into shift registers to create a 
new window each cycle. To add reconfigurabilty to the 
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Fig 2.  Overview of the island-style datapath fabric used for the evaluated 
image-processing kernels. Each row has 66 columns. 
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Fig 1.  Common circuit structure for pipelined image-processing kernels. 
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 Fig 3. (a) RTL implementation of the virtual switchbox for a single track per 
channel. (b) Realignment registers for adjusting routing latencies. 
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window generator, we added padding to support any image 
size up to 1080x1920. The generator also supports any 
window size up to 8x8, but requires manual padding in 
software due to application-specific padding requirements. 

IF address generators and memory controllers are the same 
as a normal circuit. The IF also includes a PCIe controller (not 
shown) to communicate with a host processor, although we 
could use any interface (e.g., those used by soft processors). 

The controller for the IF is simplified compared to more 
general-purpose circuits due to the specialization for pipelined 
image-processing kernels. Pipelined circuits often have simple 
control that first enables the address generators, stalls the 
pipeline whenever inputs are not available or when the output 
memory buffer is full, and signifies when a circuit has 
completed execution. To implement this control, the IF uses a 
state machine with registers that control input sizes. 

B. Tools 

To implement the IF on the FPGA, we created an IF 
generation tool that reads an XML description of the fabric 
and outputs synthesizable VHDL. 

To compile an application onto the IF, we created IF PAR 
tools. The placer uses VPR [2] with modified simulated 
annealing parameters that we empirically determined to be 
effective for this level of granularity. The router uses 
Pathfinder [10], which does not support pipelined routing, but 
as mentioned earlier, the realignment registers allow the router 
to ignore nets that are misaligned by 8 or less cycles.  

Currently, we have no synthesis tools for IFs and therefore 
manually created technology-mapped IF netlists. We could 
potentially synthesize from any HDL, and also plan to port 
OpenCL synthesis tools onto IFs for runtime compilation. 

IV. LIMITATIONS 

IFs are not intended for all usage scenarios due to overhead 
that may be too significant for small embedded systems or 
large high-performance systems. Fortunately, rapidly 
increasing FPGA sizes continually lessen the impact of this 
overhead. Furthermore, by mapping IFs directly to physical 
routing resources, device vendors can potentially eliminate all 
muxes used for routing, which represents almost all overhead. 

Flexibility is also a potential limitation. A custom circuit 
can use any mixture of operators and precisions. An IF circuit 
can also include any mixture, but it is unlikely that highly 
specialized IFs would exist in a predetermined library. In this 
situation, a designer could create a custom IF as we did by 
simply defining an appropriate XML fabric description. While 
this approach does require a single FPGA PAR iteration to 
implement the IF, that PAR time is amortized over the lifetime 
of the IF.  To reduce the time for custom IF generation, we 
plan to investigate rapid IF generation via bitfile relocation. 

Certain application domains will likely not benefit from IFs. 
For example, control-intensive applications clearly cannot be 
implemented on the IF used in this paper. We could create an 
IF for control applications, but fast IF PAR comes from coarse 
granularities. Fortunately, control circuits tend to have small 

compilation times even without IFs. 

V. EXPERIMENTS 

In this section, we evaluate the discussed IF using three 
common image-processing kernels: 2D convolution, Sobel 
edge detection, and sum-of-absolute differences (SAD). 2D 
convolution multiplies each window of an image with a 
corresponding kernel (e.g., set of coefficients) and then 
accumulates the products. Sobel edge detection is a common 
filter that first performs two 3x3 convolutions, squares the 
result of each, adds the squares, and then takes the square 
root. SAD is used for determining image similarity by 
summing the absolute differences of each window and image 
pixel. For each kernel, we use a 1080x1920 image that 
software has converted to 16-bit grayscale. For 2D 
convolution, we evaluate window sizes ranging from 3x3 to 
8x8. Sobel uses 3x3 windows and SAD uses 8x8 windows 
(although other sizes are also applicable). For this IF, the 
window size is limited to 8x8 because of the 128 inputs. 

In addition to the previously described IF, we also created a 
32-bit floating-point IF that was limited to 5x5 windows due 
to the larger floating-point area requirements. 

For each example, we compared an IF circuit with custom 
VHDL. For synthesis, we used Quartus II 9.1 SP2, running on 
a quad-core 2.66 MHz Intel Xeon W3520 with 12 GB of 
RAM. The targeted board was a GiDEL PROCStarIII PCIe 
card with an Altera Stratix III E260 FPGA. The board was 
attached to a 2.26 GHz quad-core Intel E5520 that we used for 
pre-processing and data transfer. To compare performances, 
we calculated speedup compared to software for each kernel, 
which we compiled using g++ 4.4.3 with -O3 optimizations. 

Table 1 compares the IF and direct FPGA implementations. 
As shown in the left column, IF PAR times were 700x faster 
on average. The longest IF PAR time was only 5.3 seconds. 
PAR speedup for the floating-point examples was larger due 
to a larger reduction in PAR input size. 

Performance overhead is shown in the middle of Table 1. IF 
clock frequencies are shown at the bottom (124 MHz for the 
fixed-point IF and 114 MHz for the floating-point IF). The 
average IF clock overhead was 17%, but the average 
performance overhead was only 7% due to slow PCIe data 
transfers that were independent of this clock. Actual speedup 
compared to software averaged 8.3x for the IF and 8.8x for 
the direct implementations. Sobel was slower on the FPGA in 
all cases due to PCIe transfer overhead. 

The right column of Table 1 shows area utilization of the 
direct FPGA implementations. The applications ranged from 
using 13% to 25% of the LUTs. The fixed-point and floating-
point IFs used 57% and 59%, respectively. Although the 
pessimistic mux-based IF required 2.4x to 4.4x more area, the 
extra area is not necessarily overhead because some of the 
resources could be used for other computation (e.g., larger IF 
circuits). The LUT percentages that could not be used for 
computation (i.e., muxes for routing resources, configuration 
registers) were 43% for the fixed-point IF and 34% for the 
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floating-point IF, due to the smaller fabric size. As mentioned 
earlier, by mapping the IF directly onto physical routing 
resources, all of the muxes could be eliminated, which 
represents almost all of the overhead.   

The fixed-point IF bitfile used 9,234 bits. The floating-
point bitfile was 3,600 bits because of the smaller fabric size. 
We stored the bitfiles in 128-bit wide block RAM, which 
enabled IF reconfiguration in 28 to 72 cycles. Partial 
reconfiguration on commercial devices typically takes on the 
order of tens of milliseconds. Furthermore, the IF 
reconfiguration occurred on an Altera device that does not 
support partial reconfiguration.  

Fast reconfiguration also counteracts area overhead by 
enabling multiple circuits to be swapped into the IF, as 
opposed to implementing the circuits in a single FPGA bitfile. 
Assuming an IF provides all necessary resources, the number 
of circuits is limited only by the amount of memory. The 
evaluated Stratix III E260 has more than 15 million bits of 
memory, which supports more than 1,600 IF circuits. 

VI. CONCLUSIONS 

In this paper, we evaluated an intermediate fabric for 
common image-processing kernels, which enabled placement 
and routing speedups averaging 700x compared to vendor 
tools. The main limitation is overhead, which was a modest 
7% for performance, and a more significant 34% to 44% for 
area. However, FPGA vendors could eliminate such area 
overhead by directly mapping virtual routing resources onto 
physical FPGA resources. Finally, we showed that 
intermediate fabrics enable fast partial reconfiguration, even 
on devices lacking physical support. 
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TABLE I 
SUMMARY OF PLACE AND ROUTE TIMES, PERFORMANCE OVERHEAD, AND AREA UTILIZATION (% OF TOTAL RESOURCES) 

IF Quartus 9.1 Speedup Clk FPGA
Clk 

Overhead
Speedup 

IF
Speedup 
FPGA

Perf. 
Overhead LUT REG DSP

Conv 3x3 0.9s 14min 48s 943 150 MHz 17% 3.2 3.5 9% 13% 14% 1%

Conv 4x4 1.5s 15min 06s 613 148 MHz 16% 5.9 6.3 6% 13% 14% 2%

Conv 5x5 2.1s 15min 33s 447 146 MHz 15% 8.0 8.5 6% 13% 14% 4%

Conv 6x6 3.0s 15min 41s 312 151 MHz 18% 11.1 11.9 7% 13% 15% 5%

Conv 7x7 4.0s 16min 19s 243 139 MHz 11% 14.7 15.5 5% 13% 15% 8%

Conv 8x8 5.3s 16min 08s 184 146 MHz 15% 18.8 20.0 6% 13% 15% 8%

Sobel 4.2s 14min 56s 214 154 MHz 19% 0.53 0.58 9% 13% 14% 1%

SAD 8x8 5.3s 16min 51s 190 143 MHz 13% 18.6 19.5 5% 15% 16% 0%

Conv 5x5 (float) 1.7s 25min 28s 919 148 MHz 23% 5.2 5.5 5% 21% 29% 13%

Sobel (float) 1.5s 18min 58s 759 144 MHz 21% 0.32 0.36 11% 16% 19% 3%

SAD 5x5 (float) 0.6s 30min 43s 2880 140 MHz 19% 5.3 5.5 4% 25% 38% 0%

Average 2.7s 18min 14s 700 146 MHz 17% 8.3 8.8 7% 15% 18% 4%

IF 124 MHz 57% 58% 17%

IF (float) 114 MHz 59% 61% 13%

Place and Route Times Performance Area Utilization

 


