
An End-to-End Tool Flow
for FPGA-Accelerated
Scientific Computing
Greg Stitt, Alan George, and Herman Lam

University of Florida

Melissa Smith

Clemson University

Vikas Aggarwal, Gongyu Wang, and

James Coole

University of Florida

Casey Reardon

MITRE Corp.

Brian Holland

SRC Computers, LLC

Seth Koehler

Altera Corp.

�FPGAS HAVE BEEN widely shown to have signifi-

cant performance and power advantages com-

pared to microprocessors.1 Novo-G, for example,

is an FPGA-based supercomputer that achieves per-

formance comparable to top supercomputers for

computational-biology applications, while only

consuming 8 kilowatts of power.2 Although GPUs

often outperform FPGAs for floating-point-intensive

applications, FPGAs have better computational

density per watt,2 which is becoming increasingly

important as energy and cooling costs start to dom-

inate the total cost of supercomputer ownership.

Despite these advantages, FPGA use has been lim-

ited by significantly increased application design

complexity as compared to software design, which

is mainly due to RTL design challenges. Numerous

studies have raised abstraction levels with high-level

synthesis (HLS) tools such as AutoESL’s AutoPilot,

Synfora’s PICO the open-source ROCCC (Riverside

Optimizing Compiler for Configurable Computing

tool, Impulse Accelerated Technolo-

gies’ Impulse-C, and Mentor Graphics’

Catapult C, in addition to graphical-

design environments (e.g., MathWorks’

Simulink and National Instruments’

LabVIEW).

Although HLS tools have improved

productivity, FPGA use is still largely lim-

ited to hardware experts. Recent studies

have identified other key productivity

bottlenecks, which include prohibitively long design

iterations, limited portability, interoperability, and de-

sign reuse, in addition to limited debug and perfor-

mance analysis.3

In this article, we describe a study in which we

extended and combined existing FPGA tools to cre-

ate a tool flow that addresses these bottlenecks. Al-

though previous studies have addressed bottlenecks

individually, in many cases the tasks performed by

these tools are not interoperable. Therefore, a primary

contribution of our study is the focus on end-to-end

productivity improvement. In addition, to avoid signif-

icant tool-flow disruptions that have previously lim-

ited tool acceptance, the tool flow complements

existing FPGA tools, in many cases letting designers

use their existing languages and synthesis tools. The

key contributions of the tool flow include formulation

techniques for rapid design-space exploration, a coor-

dination framework for communication and synchro-

nization between tasks in different languages and

FPGA-Based Acceleration of Scientific Computing

Editor’s note:

As part of their ongoing work with the National Science Foundation (NSF) Cen-

ter for High-Performance Reconfigurable Computing (CHREC), the authors are

developing a complete tool chain for FPGA-based acceleration of scientific

computing, from early-stage assessment of applications down to rapid routing.

This article provides an overview of this tool chain.

��George A. Constantinides (Imperial College London)

and Nicola Nicolici (McMaster University)

0740-7475/11/$26.00 �c 2011 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers68

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 68

devices, intermediate fabrics for fast placement and

routing (PAR), and tools for performance analysis

and bottleneck detection.

Tool flow overview
Figure 1 illustrates the end-to-end FPGA tool flow,

which complements existing languages and synthe-

sis tools with four main extensions that address key

productivity bottlenecks: formulation tools, a coor-

dination framework, intermediate fabrics, and per-

formance analysis tools.

To reduce design iterations, the tool flow enables

early design-space exploration, which we refer to as

formulation. FPGA application designers often spend

weeks creating an implementation, only to find that

fundamental design decisions (e.g., parallelism, com-

munication, or mappings) cause inefficient execu-

tion. The designer then iteratively modifies the

design until achieving acceptable efficiency, which

can take weeks. Formulation avoids these lengthy de-

sign iterations by combining abstract modeling and

performance prediction to enable rapid design-

space exploration of different parallelization strat-

egies, architectures, and mappings of tasks onto ar-

chitectural components, all before the designer has

written any code. The output of formulation is a

task-graph model of an application and a mapping

of tasks onto devices in which behavior of each

task has not been specified in code.

After formulation, the designer specifies behavior

of each task according to the device mapping. For

the example that Figure 1 shows, a designer may

implement software-mapped tasks using C or C++,

while implementing FPGA tasks using an HDL

language (e.g., VHDL) or a high-level language

(e.g., Impulse-C).

One limitation of current FPGA tools is a lack of

interoperability between tasks defined in different

languages for different devices. Designers currently

handle communication between such tasks manually

using mechanisms specific to a particular board, de-

vice, or language, which reduces code reuse and por-

tability. To address this problem, the tool flow uses a

coordination framework to transparently communi-

cate and synchronize (i.e., coordinate) between

tasks.

The tool flow also addresses increasingly long

PAR times, which can add hours or days to a design

iteration. Lengthy PAR also prohibits mainstream

design and debug methodologies based on rapid

compilation. To achieve faster PAR, the tool flow

uses virtual PAR-specialized FPGAs, referred to as

intermediate fabrics, implemented on commercial

off-the-shelf (COTS) devices. In addition to achieving

PAR speedup, intermediate fabrics also enable appli-

cation portability across different devices and plat-

forms, which improves design reuse.

An additional contribution of the tool flow is the

ReCAP (Reconfigurable Computing Application Per-

formance) performance analysis tool, which helps

identify and eliminate performance bottlenecks. Al-

though such tools are common in software design,

to our knowledge ReCAP is the first performance

analysis tool for FPGA applications.

Although the tool flow integrates all extensions,

each step is optional. For example, designers uncon-

cerned with PAR times could skip intermediate

fabrics.

To illustrate tool use in the tool flow we created,

we use a time-domain finite-impulse-response

(TDFIR) benchmark from the HPEC Challenge,

which defines a set of common kernels for signal

and image processing,
4 implemented on a single

node of Novo-G, which consists of a quad-core

C VHDL Impulse-C

High-level
synthesis

RT
synthesis

SW
compiler

Intermediate fabrics

Coordination framework

Fast place & route

Portability across devices/platforms

Rapid design-space
exploration

CPUs

Formulation

Performance analysis

.

.

Transparent coordination between languages/devices

Automatic bottleneck detection/visualization

Figure 1. Overview of end-to-end FPGA tool flow.

69July/August 2011

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 69

Intel Xeon and four Altera Stratix III E260 FPGAs on

a PCIe GiDEL PROCStar-III board. Although this

example is intentionally small for demonstration,

we have evaluated the tools for more complex

applications.5-7

Formulation
Figure 2a describes our formulation approach,

which lets designers explore different algorithms

(i.e., parallelization and communication strategies),

architectures, and mappings of algorithmic tasks to ar-

chitecture components without having to write any

code. Formulation consists of two main steps: RCML

modeling and prediction.

RCML modeling

To perform formulation, a designer initially models

a potential algorithm and architecture in the Recon-

figurable Computing Modeling Language.7 RCML

differs from most modeling environments by using

an abstraction level that we refer to as an estimation

model. Existing modeling environments, such as

Ptolemy and Simulink, typically use an abstract exe-

cutable model, in which users define a functional

implementation before estimating performance. Simi-

larly, programming languages and libraries such as

UPC, OpenMP, and Intel’s Cilk++ let designers explore

parallelism strategies, but they also require functional

code. By contrast, RCML lets users quickly explore dif-

ferent parallelization, mapping, and work distribution

alternatives by replacing a precise definition of tasks

(i.e., code) with abstract attributes.

Figure 2b illustrates an example RCML algorithm

model for the evaluated TDFIR application, in which

initially a start task performs preprocessing and then

scatters kernels and signals to four pipelined TDFIR

tasks, whose results are gathered by the end task.

Although existing modeling languages could also be

used for formulation, the RCML algorithm model

simplifies FPGA application modeling by providing

communication and computation constructs com-

mon to FPGA applications. The algorithm model is

FPGA-Based Acceleration of Scientific Computing

Mapping

Algorithm
model

Prediction

Architecture
model

System model

Rapid design-space
exploration

Predicted: 67.2 sec
Actual: 68.9 sec

CPU

FPGA

4 FPGAs (i = 4)
400 Mbytes data / FPGA(a) (b)

TDFIR Attributes:
Frequency = 143 MHz
Latency = 104 cycles
B/W (write) = 115 Mbytes/s
B/W (read) = 593 Mbytes/s

(c)
0

1

2

3

4

P
re

d
ic

tio
n

er
ro

r
(%

)

(d) Average50Mbytes x 4100Mbytes x 4200Mbytes x 4400Mbytes x 4

Start

Mapped to
FPGA End

Gather

i = 4
TDFIR

Scatter

Scatter

Figure 2. A formulation approach for rapid design-space exploration (a) in which designers use

Reconfigurable Computing Modeling Language (RCML) models to describe parallelism, such as time-

domain finite-impulse response (TDFIR) (b), which when combined with user- and tool-estimated

attributes (c), enable accurate performance prediction (d). (B/W: bandwidth.)

70 IEEE Design & Test of Computers

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 70

represented as a synchronous, data-independent

dataflow graph, in which each node could be an ar-

bitrary task (e.g., fast Fourier transform or convolve),

or an FPGA-specialized construct (e.g., pipeline).

Edges in the graph either can be direct communica-

tion between tasks or can represent more-complex

communication (e.g., scatter, gather, or broadcast).

To create an algorithm model, a designer requires

only a basic understanding of the coarse-grained par-

allelism (like that given in Figure 2b) of an applica-

tion. If more-detailed analysis is required, designers

can create a finer-grained model.

The RCML architecture model (not shown in

Figure 2) allows a designer or platform vendor to de-

scribe a system architecture by combining different

devices and interconnects.

After modeling the algorithm and architecture, the

designer can explore different mappings to create the

RCML system model. For example, designers can map

tasks expected to be computationally intensive onto

FPGAs, while mapping communication between

tasks onto an available interconnect (e.g., PCIe or

InfiniBand). For the TDFIR example, we map all

TDFIR tasks to four separate FPGAs, and the start

and end tasks to a microprocessor.

Prediction tools

The RCML system model also includes designer- or

tool-estimated attributes for each task and architec-

tural component, which enables prediction tools

to estimate performance. For the TDFIR example

(Figure 2c), these attributes included pipeline latency

and clock frequency, in addition to I/O bandwidth de-

termined by benchmarking the PCIe interconnect

bandwidth for different transfer sizes. Although any

prediction tool could potentially be used, RCML cur-

rently uses the RC amenability test (RAT) for perfor-

mance prediction,5 and the core-level modeling and

design (CMD) tool for estimation of FPGA frequency,

area, and latency.8

RAT is an analytical performance prediction

model that uses common characteristics of pipelined

FPGA implementations to predict performance. RAT

predicts communication times using transfer sizes

combined with interconnect throughput and latency,

both of which can be easily specified as attributes in

the RCML model. RAT predicts computation time of

FPGA tasks using attributes that specify the input

size, frequency, and I/O bandwidth of the correspond-

ing task. Although these attributes are clearly not

sufficient for all applications, RAT is intended for

pipelined (i.e., data-independent data flow) FPGA

circuits, which are commonly used in scientific

computing.

Although designers can manually specify attrib-

utes, the tool flow also supports automated attribute

estimation. To determine attributes of FPGA tasks

with the CMD tool, designers can predict frequency,

area, and latency because the CMD tool lets designers

model FPGA circuits as an interconnection of coarse-

grained cores��e.g., floating-point operators, fast

Fourier transform (FFT), or FIR��that have predeter-

mined areas, latencies, and clock frequencies. CMD

also lets designers analyze characteristics of the inter-

connection to make predictions for the entire circuit.

The details are outside the scope of this article, but

the basic approach combines the critical-path delay

of individual cores with an analysis based on Rent’s

rule to estimate effects of routing congestion.8 In

some cases, where accuracy is a lesser concern,

designers can simply estimate appropriate attribute

values. For example, a designer might want to assume

that 125 MHz is attainable, and then estimate that a

certain number of FPGA-mapped tasks will fit on a de-

vice. Although predictions based on such assump-

tions will be less accurate, these predictions can

still help identify fundamental bottlenecks that

might require a completely different parallelization

strategy.

Figure 2d compares RAT performance predictions

with actual performance for the TDFIR application

when using different signal sizes ranging from

400 Mbytes down to 50 Mbytes. On average, predic-

tion error in this case was only 3%. Similar prediction

errors were shown in previous application studies,7

which used more complex models and mappings.

Furthermore, we created these models and per-

formed this analysis in minutes. If we had not been

satisfied with this predicted performance, we could

have revised the algorithm, architecture, or mapping

to eliminate bottlenecks. For example, an FPGA

implementation supporting arbitrary kernel sizes

requires postprocessing, which could benefit from ex-

ploration to determine how to partition the postpro-

cessing across the FPGAs and/or microprocessors.

Assuming a designer is already familiar with an appli-

cation or algorithm, we would expect similar times

(i.e., minutes) for other scenarios. It is difficult to ac-

curately estimate productivity improvement. How-

ever, by assuming that formulation will typically

71July/August 2011

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 71

save at least one design iteration, it is reasonable to

say that the presented techniques can reduce total

design time by days or weeks.

Coordination framework
Figure 3 illustrates an overview of the system

coordination framework (SCF),9 which enables ap-

plication tasks defined in multiple languages for dif-

ferent devices to transparently coordinate. SCF is

conceptually similar to approaches that ease spec-

ification of FPGA multiprocessor systems such as

Xilinx EDK (Embedded Development Kit; http://

www.xilinx.com/support/documentation/dt_edk_

edk13-1.htm), Altera SOPC Builder (System-On-A-

Programmable-Chip; http://www.altera.com/support/

software/system/sopc/sof-sopc_builder.html), and

RAMP (Research Accelerator for Multiple Processors;

http://bwrc.eecs.berkeley.edu/Research/RAMP).10

SCF complements these approaches by providing a

common interface that is vendor, device, and lan-

guage neutral.

To use SCF, the designer initially defines individual

tasks (shown as ‘‘Task definition’’) using any lan-

guage, compiler, or synthesis tool. On the basis of

the RCML model for the TDFIR example, we define

tasks Start and End in C++ (which we compile

with g++), and TDFIR in VHDL (which we synthesize

using Altera Quartus II). SCF also supports other lan-

guages, such as Impulse-C, but we did not evaluate

those languages for TDFIR.

To integrate tasks with SCF, the designer specifies

task inputs and outputs in each language using

message-passing primitives (e.g., SCF_Send and SCF_

Receive) that hide low-level communication details.

In fact, the task-definition code does not need to

specify the source of a receive or the destination of

a send. As Figure 3 shows, the C++ code simply

sends to an output called ‘‘out’’ and receives from

an input call ‘‘in.’’ The VHDL code uses send and re-

ceive entities with a simple communication protocol

to interface with the TDFIR circuit. Without SCF, defin-

ing a task I/O depends on the source and destination

device, often requiring the use of different combina-

tions of APIs for different mappings. Because the

task I/O in SCF is independent of other tasks, devices,

and mappings, SCF enables task portability across

multiple devices and code reuse. Furthermore, SCF

can potentially convert between data formats used

FPGA-Based Acceleration of Scientific Computing

int signals[NUM_SIGNALS][SIGNAL_SIZE];
...
SCF_Send(signals, ..., "out");

Task definition

Task graph creation

Communication
synthesis Custom message-passing routines

Start

TDFIR

Mapping

int results[NUM_SIGNALS][RESULT_SIZE];
...
SCF_Recv(results, ...,"in");

SCFSend: SCF_Send port map(
send_go1, send_len1, data_in_send1, send_done1, send_label1, -- App interface
go_f2c, go_f2f, data_len_f2c, data_len_f2f, -- underlying communication
data_in_f2c, data_in_f2f, done_f2c, done_f2f – underlying communication

);

sedge se ; // Scatter
gedge ge ; // Gather
task Start (output out)
{ se = out ; }

loop (i = 1 ; i < 5 ; i++)
{ task TDFIR<i> (output out1,

input in1)
{ ge:<i> = out1 ;
in1 = se:<i> ; }

}

task End (input in)
{ in = ge ; }

CPU

FPGA

int SCF_Send (void *buf, int count,
int bytewidth, char *label)

{
if (strcmp(label, "out") == 0)
int send_count = count/4;
Gidel_SCF_Send(&buf[0*send_count], send_count,

(int)bytewidth, "1,") ;
Gidel_SCF_Send(&buf[1*send_count], send_count,

(int)bytewidth, "2,") ;
...
else

printf("The label %s is not a valid output
identifier \n", label);

return 0;
}

Finish

Scatter

Gather

Figure 3. System coordination framework (SCF) overview. SCF allows designers to transparently combine tasks

from different languages (e.g., C and VHDL) and devices (e.g., CPU and FPGA) into an application (e.g., TDFIR)

by automatically generating synchronization and communication routines based on intertask communication and

platform interconnect.

72 IEEE Design & Test of Computers

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 72

by different devices, which fur-

ther improves productivity.

After defining tasks, the de-

signer creates the complete ap-

plication by using a specialized

language to connect the tasks

into a task graph (shown as

‘‘Task graph creation’’ in Figure 3)

that defines all communication.

As Figure 3 shows, this language

defines constructs for connecting

task I/O interfaces to specialized

edges that define communica-

tion patterns (e.g., sedge for scat-

ter, and gedge for gather). SCF

currently supports scatter, gather,

broadcast, and direct communi-

cation. Next, the designer per-

forms mapping, which assigns

tasks to devices in the system

architecture as specified in

the RCML system model (not

shown). SCF then uses the map-

ping to perform communication

synthesis, which implements all

edges of the task graph using

the system’s specific communication capabilities.

For the TDFIR example, SCF implements all CPU to

FPGA communication using API calls for the GiDEL

board. If this example required FPGA-to-FPGA com-

munication, SCF would implement such communica-

tion using physical wires on the GiDEL board.

For TDFIR on Novo-G, SCF area and performance

overhead in our tool flow implementation was less

than 1%. For other image-processing and scientific-

computing applications that we tested, average area

overhead compared to device-specific APIs was 2%,

and performance overhead was 1%.9

Intermediate fabrics
Intermediate fabrics (IFs),11 as Figure 4 shows,

are virtual reconfigurable devices that act as an in-

termediate translation layer between netlists and

physical FPGAs. IFs are conceptually similar to vir-

tual overlay networks12 but also provide fast PAR.

From the application designer’s point of view, the

virtual IF tool flow (see Figure 4a) is identical to

other reconfigurable devices. However, unlike a

physical device, whose architecture must support

many applications, IFs can be specialized for

particular domains or even individual applications.

Such specialization hides the complexity of fine-

grained COTS devices, thus enabling fast PAR. In

addition, IFs enable portability across any physical

device that can implement the fabric. Other advan-

tages include partial reconfiguration on devices

lacking architectural support and abstraction of

multiple devices (e.g., one IF spanning multiple

FPGAs).

IF architectures can potentially implement any fab-

ric, but the tools currently support island-style fabrics

with application-specialized computational units

(CUs) spread across reconfigurable interconnects.

Because IFs are specialized for different domains,

CUs can range from bit-level operations to coarser-

grained operations such as fixed- or floating-point

arithmetic logic units, fast Fourier transforms, filters,

and so on. Other specialization options include vary-

ing fabric size, connection box or switch box flexibil-

ity and topology, percentages of long tracks, and

tracks per channel, among others.11 The intent of

these specializations is to sacrifice a small amount

of general routability to reduce area overhead for

the target application.

Intermediate fabric (IF)

Synthesized circuit

* *

+ + + +

+ + + +

* * * *
+ +

+
+ 1 time only

IF PAR

IF tech.
mapping

Application
RTL

IF bitfile

Device tools
(Physical PAR)

IF libraryIF
synthesis

Library modelSynthesis model

IF selection

FPGA bitfile

FPGA

IF

(a) Virtual flow (b) Physical flow

IF fabric description

**

* * **

Figure 4. Intermediate fabrics implement application-specialized virtual

RC architectures on FPGAs to achieve fast placement and routing (PAR).

73July/August 2011

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 73

The tools implement IFs on a physical device

using two possible use models, as Figure 4b shows.

The synthesis model creates a custom IF for the target

application (e.g., TDFIR), which requires a single

physical PAR, but will often have the least overhead

due to the highest specialization. Alternatively, the li-

brary model uses IF selection to search for an appro-

priate pre-implemented fabric. The tools currently

have partial support for both models, although the li-

brary model is less mature, owing to open challenges

involving trade-offs between library size and support

for different domains. The synthesis and selection

steps currently require manual assistance, where the

designer either specifies the resources needed or

selects an existing fabric. After selecting an IF, the

tools output corresponding RTL VHDL, which can

be synthesized to an FPGA.

The main limitations of IFs are area and clock fre-

quency overhead incurred by the RTL virtual fabric.

Fortunately, the ability to specialize IFs for particular

applications and domains can greatly reduce this

overhead. Although we were unable to evaluate the

TDFIR application due to a lack of support for IFs

on Novo-G (which will be completed soon), previous

results showed that IFs used for floating-point circuits

achieved a PAR speedup of 1,112�,11 with an area

overhead of 14% and a clock overhead of 19% on a

Xilinx Virtex 4 LX200. IFs used for 16-bit, fixed-point

circuits achieved a PAR speedup of 275�, with an

area overhead of 9% and a clock overhead of 18%.

In both cases, retained routability was more than

90% after specialization.

Performance analysis
Figure 5a illustrates the ReCAP performance anal-

ysis tool,6 which instruments application code to

measure time spent in different regions. The software

profiling of ReCAP is similar to performance-counter-

based profilers such as Intel’s VTune, but ReCAP

extends these capabilities to identify FPGA and com-

munication bottlenecks. For RTL code, ReCAP adds

counters to all clocked process blocks to track fre-

quencies of different states and paths. Next, the de-

signer executes the instrumented application to

collect performance measurements. To deal with lim-

ited resources inside the FPGA, ReCAP periodically

stalls execution, transfers measurements to the micro-

processor, and then continues. ReCAP will often

avoid stalls by doing postmortem monitoring when

counters and memories are guaranteed not to

overflow. Upon completion, ReCAP collects measure-

ments and creates visualizations to identify bottle-

necks, which the designer then optimizes.

ReCAP also performs optional bottleneck detec-

tion, where designers add annotations via pragmas

to specify the purpose of each region. For example,

in a state machine, states could be used for initializ-

ing the circuit, waiting for data, performing work,

and so on. ReCAP combines the pragmas with the

collected measurements to automatically detect bot-

tlenecks, and then reports optimization suggestions

according to the corresponding ideal speedup.

ReCAP assists with debug by using monitors and

block RAM to create in-circuit waveforms, like Altera’s

SignalTap and Xilinx’s ChipScope tools do, but with-

out requiring a JTAG connection. The fact that a

JTAG connection is not needed eases the tool’s use

for designers targeting PCIe accelerator boards. To

use these techniques, the designer selects the signals

to monitor and optionally specifies when monitoring

should occur using a VHDL condition statement con-

sisting of any of the internal signals. ReCAP also gen-

erates testbenches based on in-circuit behavior that

identify differences between simulation and actual

execution, while also supporting in-circuit assertions.

A potential limitation of ReCAP is overhead intro-

duced by the measurements, which could potentially

perturb application behavior, leading to misidentified

bottlenecks or exposure of application bugs that were

previously hidden. However, for existing case studies,

ReCAP overhead was negligible, requiring only a few

counters and minimal memory. In situations where a

designer would want to monitor numerous resources,

overhead could potentially be higher, but in our expe-

rience such monitoring has not been necessary to

identify bottlenecks.

Figure 5b illustrates TDFIR when using between

one and four FPGAs for a data set of 128 filters,

with signal sizes of 32,768 samples and kernel sizes

of 4,096 samples. As shown, the original FPGA imple-

mentation had poor scalability. To detect this bottle-

neck, we used ReCAP and discovered that the

FPGAs were idle most of the time, despite performing

significant computation. ReCAP identified several

potential causes of the bottleneck, which included

inefficient communication and ‘‘late sender’’ bottle-

necks between the FPGAs and CPU. We optimized

the inefficient communication by using lower-latency

API calls and by adjusting transfer sizes to maximize

bandwidth. We optimized the ‘‘late sender’’ bottlenecks

FPGA-Based Acceleration of Scientific Computing

74 IEEE Design & Test of Computers

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 74

by overlapping computation and communication

via buffering.

These optimizations led to a 1.6� speedup for a

single FPGA and a 2.9� speedup for four FPGAs,

which corresponded to a speedup of 54� over the

software baseline. Compared to a previous GPU

study (see Figure 5c), the ReCAP-optimized, single-

FPGA implementation was 5� faster for this data set

(shown as data set C). However, faster GPUs and

larger FPGAs are now available. For the smaller data

set A (20 filters, signal size of 1,024, kernel size

of 12), the Xeon was faster than both the GPU and

FPGA. Data set B uses an input size in between A

and C with 64 filters, a signal size of 4,096, and a ker-

nel size of 128. For set B, the GPU and optimized

FPGA implementation were both slightly faster than

the Xeon. The overhead introduced by ReCAP was

a 5.1% increase in software execution time, a 1.8% in-

crease in LUTs, a 1% increase in registers, and a less

than 1% decrease in frequency.

Original app

Instrumentation

Inst. C/C++ Inst. RTL

Visualization Bottleneck detection

Execute and measure

Performance measurements

Pragmas

Optimize

(b)(a)

(c)

Xeon E5520 Nvidia 8800GTX
Stratix III E260 (original) Stratix III E260 (optimized)

0

5

10

15

20

25

30

P
er

fo
rm

an
ce

 (
G

flo
p

s)

Data set

A B C

1.6x
speedup

0
1 2 3 4

10
20
30
40
50
60
70
80
90

100

P
er

fo
rm

an
ce

 (
G

flo
p

s)

FPGAs

Original (FPGA) Optimized (FPGA)

Figure 5. ReCAP (Reconfigurable Computing Application Performance) performance analysis overview (a).

Results for TDFIR showing poor scalability for original FPGA version (b). Optimizing ReCAP-identified

bottlenecks provided speedup of 2.93 for four FPGAs and a single-FPGA speedup of 1.63, making

the FPGA 53 faster than an Nvidia 8880GTX GPU (c). (Figure to appear in S. Koehler, G. Stitt, and

A. George, ‘‘Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications,’’ ACM

Transactions on Reconfigurable Technology and Systems, September 2011; used with permission.)

75July/August 2011

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 75

AS FUTURE WORK, we plan to evaluate the complete

tool flow on emerging scientific-computing applica-

tions. We plan to extend the formulation studies to in-

clude Turing-complete RCML models that enable

nonfunctional simulations for automatic bottleneck

detection. For intermediate fabrics, future work will

focus on reducing area overhead, and using interme-

diate fabrics to enable runtime compilation of OpenCL

applications for FPGAs. �

Acknowledgments
This work was supported in part by the I/UCRC

(Industry/University Cooperative Research Centers)

Program of the National Science Foundation under

grant EEC-0642422, and DARPA c/o AFRL under con-

tract FA8650-07-1-7742. We gratefully acknowledge the

vendor equipment and/or tools provided by Aldec,

Altera, GiDEL, Nallatech, and Xilinx.

�References
1. A. DeHon, ‘‘The Density Advantage of Configurable

Computing,’’ Computer, vol. 33, no. 4, 2000,

pp. 41-49.

2. A. George, H. Lam, and G. Stitt, ‘‘Novo-G: At the Fore-

front of Scalable Reconfigurable Supercomputing,’’ IEEE

Computing in Science and Engineering, vol. 13, no. 1,

2011, pp. 82-86.

3. B. Nelson et al., ‘‘Design Productivity for Configurable

Computing,’’ Proc. Int’l Conf. Eng. of Reconfigurable

Systems and Algorithms (ERSA 08), CSREA Press,

2008, pp. 57-66.

4. R. Haney et al., ‘‘The HPEC Challenge Benchmark

Suite,’’ High-Performance Embedded Computing Work-

shop, 2005; http://www.ll.mit.edu/HPECchallenge/docs/

hpecChallengePresentation.Haney.2005.pdf.

5. B. Holland, K. Nagarajan, and A. George, ‘‘RAT: RC

Amenability Test for Rapid Performance Prediction,’’

ACM Trans. Reconfigurable Technology and Systems,

vol. 1, no. 4, 2009, pp. 1-31.

6. S. Koehler, G. Stitt, and A. George, ‘‘Platform-Aware

Bottleneck Detection for Reconfigurable Computing Appli-

cations,’’ ACM Trans. Reconfigurable Technology and

Systems, to be published in Sept. 2011.

7. C. Reardon et al., ‘‘RCML: An Environment for Estima-

tion Modeling of Reconfigurable Computing Systems,’’

ACM Trans. Embedded Computing Systems, to be

published.

8. G. Wang et al., ‘‘A Framework for Core-Level Modeling

and Design of Reconfigurable Computing Algorithms,’’

Proc. 3rd Int’l Workshop High-Performance Recon-

figurable Computing Technology and Applications

(HPRCTA 09), ACM Press, 2009, pp. 29-38.

9. V. Aggarwal et al., ‘‘SCF: A Device- and Language-

Independent Task Coordination Framework for Reconfig-

urable, Heterogeneous Systems,’’ Proc. 3rd Int’l Work-

shop High-Performance Reconfigurable Computing

Technology and Applications (HPRCTA 09), ACM Press,

2009, pp. 19-28.

10. G. Gibeling et al., The RAMP Architecture, Language and

Compiler, tech. report, Dept. of Electrical Engineering and

Computer Science, Univ. of California, Berkeley, 2007;

http://ramp.eecs.berkeley.edu.

11. J. Coole and G. Stitt, ‘‘Intermediate Fabrics: Virtual Archi-

tectures for Circuit Portability and Fast Placement and

Routing,’’ Proc. 5th IEEE/ACM Int’l Conf. Hardware/

Software Codesign and System Synthesis (CODES/

ISSS 10), ACM Press, 2010, pp. 13-22.

12. N. Kapre et al., ‘‘Packet-Switched vs. Time-Multiplexed

FPGA Overlay Networks,’’ Proc. IEEE Symp. Field-

Programmable Custom Computing Machines (FCCM 06),

IEEE CS Press, 2006, pp. 205-216.

Greg Stitt is an assistant professor of electrical

and computer engineering at the University of Flor-

ida, where he is also a faculty member of the Na-

tional Science Foundation (NSF) Center for High-

Performance Reconfigurable Computing (CHREC).

His research interests include design automation

for reconfigurable computing, high-performance

computing, and embedded systems. He has a PhD

in computer science from the University of California,

Riverside, and is a member of IEEE and the ACM.

Alan George is a professor of electrical and com-

puter engineering at the University of Florida, where

he also directs the NSF CHREC. His research interests

include high-performance architectures, networks,

systems, services, and applications for reconfigurable,

parallel, distributed, and fault-tolerant computing. He

has a PhD in computer science from Florida State Uni-

versity, and is a member of IEEE and the ACM.

Herman Lam is an associate professor of electrical

and computer engineering at the University of Florida,

where he is also a senior research faculty member

at the NSF CHREC. His research interests include

productivity methods and tools for RC application de-

velopment, particularly as applied to large-scale appli-

cations for reconfigurable supercomputing. He has a

FPGA-Based Acceleration of Scientific Computing

76 IEEE Design & Test of Computers

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 76

PhD in electrical engineering from the University of

Florida, and is a member of IEEE and the ACM.

Melissa Smith is an assistant professor of electrical

and computer engineering at Clemson University. Her

research interests include reconfigurable and high-

performance computing. She has a PhD in electrical

engineering from the University of Tennessee, Knox-

ville, and is a member of ACM and senior member of

IEEE.

Vikas Aggarwal is pursuing a PhD in the Depart-

ment of Electrical and Computer Engineering at the

University of Florida, where he is also affiliated with

the NSF CHREC. His research interests include tools

and applications for reconfigurable computing and

high-performance computing. He has an MS in electri-

cal and computer engineering from the University of

Florida.

Gongyu Wang is pursuing a PhD in the Department

of Electrical and Computer Engineering at the Univer-

sity of Florida, where he is also affiliated with the NSF

CHREC. His research interests include formulation

and design-space exploration for reconfigurable com-

puting. He has an MS in electrical and computer engi-

neering from the University of Florida.

James Coole is pursuing a PhD in the Department

of Electrical and Computer Engineering at the Univer-

sity of Florida, where he is also affiliated with the NSF

CHREC. His research interests include architectures

and tools for reconfigurable computing. He has a BS

in computer engineering from the University of Florida.

Casey Reardon is a senior networking and distrib-

uted systems engineer at MITRE Corp. His research

interests include hardware-software partitioning and

design-space exploration for reconfigurable comput-

ing. He has a PhD in electrical and computer engi-

neering from the University of Florida.

Brian Holland is a senior application engineer at

SRC Computers. His research interests include model-

ing and amenability analysis for reconfigurable com-

puting. He has a PhD in electrical and computer

engineering from the University of Florida.

Seth Koehler is a senior software engineer at Altera

Corp. His research interests include performance analy-

sis and automatic bottleneck detection for reconfigurable

computing. He has a PhD in electrical and computer

engineering from the University of Florida.

�Direct questions and comments about this article to

Greg Stitt, Dept. of Electrical and Computer Engineer-

ing, University of Florida, PO Box 116200, Gainesville,

FL 32611-6200; gstitt@ece.ufl.edu.

77July/August 2011

[3B2-9] mdt2011040068.3d 27/6/011 12:26 Page 77

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

