
 
Abstract - Partial reconfiguration (PR) enhances traditional 
FPGA-based high-performance reconfigurable computing by 
providing additional benefits such as reduced area and 
memory requirements, increased performance, and increased 
functionality as compared to non-PR systems. However, since 
leveraging these additional benefits requires specific designer 
expertise and increased design time, PR has not yet gained 
widespread usage. To alleviate some of PR's design 
challenges, we present VAPRES, a PR base architecture that 
provides a customizable and flexible platform for PR system 
and application design. VAPRES's key architectural 
contributions include customizable PR regions (PRRs) (e.g. 
size, shape, number of regions), a customizable inter-PRR 
communication architecture (e.g. number of and width of 
channels) offering reconfigurable and on-demand 
communication channel establishment, and seamless hardware 
module replacement. Finally, we present two design flows, 
system design and application design, to provide VAPRES 
design assistance. 

Keywords: partial reconfiguration, field programmable gate arrays 
(FPGAs), high-performance reconfigurable computing, embedded 
computing. 

1. Introduction and Motivation 
Field programmable gate arrays (FPGAs) have typically 

been used to implement custom data paths in reconfigurable 
computing, revealing benefits such as reduced power and area 
requirements as well as significant performance increases 
(commonly achieved speedups range from 10x-1000x when 
compared to equivalent software implementations [1][8][19]). 
Dynamically reconfigurable systems fully leverage the 
reconfigurability offered by FPGAs by exploiting the fact that 
not all hardware functionality is required at the same time, 
allowing mutually exclusive hardware modules to time-
multiplex the FPGA fabric resources during runtime.  

In order to realize these benefits, system designers are faced 
with a challenging task. Designing applications for FPGAs 
requires specialized design methodologies, hardware 
description language (HDL) knowledge, and use of specialized 
tool suites. In order to extract maximum performance speedups, 
designers must not only thoroughly understand the 
application’s parallelism, but also be able to effectively 
modularize and synchronize application execution and data 

processing by partitioning the application into several/many 
communicating hardware modules. Runtime reconfiguration is 
the process of swapping out the hardware modules that have 
just finished executing with new hardware modules ready to 
execute. Unfortunately, runtime reconfiguration can impose 
lengthy performance overheads, as the entire system execution 
must halt as new hardware modules are loaded, even for small 
fabric changes. Full reconfiguration times (reconfiguring the 
entire FPGA fabric) can take on the order of hundreds of 
milliseconds [14][31] and may not be feasible for time critical 
applications. Finally, applications with many configurations 
can require excessive memory resources. A full bitstream 
(information needed to configure the entire FPGA fabric) is 
needed for each fabric configuration, even if two configurations 
have only small differences (redundant information must be 
stored in each full bitstream to encapsulate entire fabric 
operation). Careful consideration of all FPGA design 
challenges is critical to achieve maximum benefits as poorly 
designed systems can have detrimental side effects on power 
and performance. 

Partial reconfiguration (PR) [28] enhances FPGA usability 
by partitioning the FPGA fabric into two main regions: the 
static region and the reconfigurable region. The static region 
contains all hardware functionality that will remain fixed 
during entire system execution (is never reconfigured). 
Reconfiguration is isolated to the reconfigurable region, which 
is further partitioned into several disjoint partially 
reconfigurable regions (PRRs). Each PRR can be individually 
reconfigured while all other PRRs and the static region remain 
operational. PRRs implement an application’s hardware 
modules and runtime reconfiguration consists of 
loading/unloading hardware modules into PRRs. Hardware 
module switching is an enabling technology in novel operating 
system frameworks [9], fault tolerance [11], and artificial 
intelligence systems [5]. 

PR enhances FPGA benefits in several ways. PR enables 
reconfiguration without the need to halt entire system 
execution. This functionality can increase hardware time-
multiplexing opportunities, leading to further reduced area and 
power requirements. Since PRRs can be individually 
reconfigured, hardware modules can even be prefetched into 
PRRs, significantly reducing or even eliminating runtime 
reconfiguration overhead by overlapping module execution 
with reconfiguration time. PR also reduces the system’s 
memory requirements and reconfiguration time, as partial 

VAPRES: A Customizable and Flexible Base 
Architecture for Partially Reconfigurable Systems 

Ann Gordon-Ross and Abelardo Jara-Berrocal 
NSF Center for High-Performance Reconfigurable Computing (CHREC) 

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 
{ann, berrocal}@chrec.org 



bitstreams (information needed to reconfigure a PRR) are much 
smaller than full bitstreams. 

PR’s hardware module switching capabilities are 
particularly advantageous for reconfigurable stream processing 
systems (RSPSs). RSPSs are composed of a set of hardware 
and software modules (software modules execute on an 
embedded microprocessor core) connected together to 
transform a data input stream into a processed data output 
stream. The desired data stream transformations may be 
dependent stream characteristics, application requirements, or 
available resources. Since transformation goals may change 
mid-stream, RSPSs require mechanisms to dynamically switch 
stream-processing modules (i.e. apply a different filtering 
technique to a security monitoring video if a critical target is 
identified). However, for hardware module switching to be 
most advantageous, the switching process must be quick, 
incurring minimum stream processing interruption and no data 
loss. 

Unfortunately, PR system design adds additional challenges 
and complexities and significantly increases system design time 
as compared to traditional non-PR FPGA system design. 
Current PR FPGA design tools (i.e. Xilinx Early Access PR 
flow [28]) are exceedingly complex, requiring system and 
application designers to have advanced knowledge of their 
target FPGA architecture. In addition, designer’s must 
manually perform several time-consuming steps such as 
partitioning an application into the static region and one or 
more PRRs and creating the system floorplan by explicitly 
defining PRR physical locations and dimensions (e.g. size, 
height, and width). Application partitioning must also consider 
module size and granularity, module overlay (how and which 
modules will share PRRs), and module placement and 
scheduling. Special architectural considerations must also be 
addressed in order to provide hardware modules with the 
necessary inter-module and module-to-static region 
communication. The communication network must either be 
designed statically based on fixed module-to-PRR mappings or 
must provide an on-demand channel establishment architecture 
or network-on-chip (NoC) [3]. Finally, RSPSs require 
architectural support and a methodology to seamlessly swap 
hardware modules without interrupting data processing. Adding 
the complexity of PR design to the challenges already imposed 
with traditional FPGA design makes PR design even more 
susceptible to detrimental side effects on power and 
performance. 

In this paper, we present architectures and methodologies 
aimed at increasing PR’s amenability to a wider range of 
system designers. VAPRES (Virtual Architecture for Partially 
Reconfigurable Embedded Systems) is a fundamental PR base 
architecture, which provides system designers with a highly 
customizable and flexible PR base system. Numerous 
architectural parameters provide fine-grained application 
specialization to meet varying application requirements. 
VAPRES includes a highly customizable and flexible inter-
module communication architecture using switch-based on-
demand communication channel establishment between 
arbitrary modules. In addition, VAPRES provides architectural 
support for local clock domains (each PRR can operate at a 
different clock frequency) and seamless module switching for 

RSPS applications. Finally, we present two PR design flows to 
leverage VAPRES: a PR system design flow and a PR 
application design flow.  

2. Related Work 
Conger et al. [7] formulated two methodologies to 

efficiently design and implement PR systems: a special-purpose 
and a multipurpose system design flow. The special-purpose 
system design flow targeted highly optimized PR systems and 
required complete application specification and behavior 
knowledge during system design time. In contrast, the 
multipurpose system design flow targeted the design of PR 
base systems for implementing a wide range of applications.  

In the area of multipurpose PR design, Walder et al. [25] 
proposed a PR architecture for the Virtex-2. Floorplanning 
divided the FPGA fabric into multiple columns (vertical slots) 
to accommodate the hardware modules. A horizontal bus-
structure crossing all columns using custom-designed bus 
macros provided inter-module and module-to-external 
processor communication. However, the authors did not devise 
a complete PR and soft-core processor integration 
implementation methodology.  

Ullmann et al. [24] extended previous PR architectures to 
the Virtex-2 Pro by implementing a system-on-chip (SoC) 
consisting of a Microblaze processor, an internal configuration 
access port (ICAP) controller [28], and four user-definable 
PRRs. Williams et al. [26] and Bergmann et al. [4] proposed 
Egret, a similar architecture with an embedded Linux system 
running on the Microblaze processor. Both of these 
architectures did not support direct inter-module 
communication, forcing all inter-module communication to be 
routed through the Microblaze. The embedded processor core 
speed and amount of embedded RAM resources impacted both 
performance and amenability of applications that required inter-
module communication. 

To address the bottleneck imposed by routing all inter-
module communication through a microprocessor, Bobda et al. 
[6] presented the Erlangen Slot Machine (ESM) for the Virtex-
2. The ESM used a circuit-switched NoC (RMBoC) to enable 
each module to connect to any other module or system 
peripheral using a linear array of switches. This one-
dimensional architectural layout provided unrestricted module-
to-PRR mapping. Architectural parameters included number 
and width of communication links, but switches were restricted 
to only one input and one output port for module connections. 
Switches used a centralized FIFO and arbiter to receive all 
connection requests and dynamically established dedicated 
communication paths between modules. However, the 
architecture did not leverage flow control, which is problematic 
when a modules exhaust buffer memory resources. Finally, the 
modules and communication architecture were required to 
operate at the same clock frequency. RMBoC achieved an 
operating frequency of 99 MHz and required 3407 slices (10% 
of device usage) on a Virtex-2 6000 for a design with four 
switches and four communication links between switches. 

Sedcole et al. [22] developed Sonic-on-a-Chip, an image 
processing PR architecture for the Virtex-2 Pro and Virtex-4. 
This work introduced the idea of separating the PR base system 



design from application design. The base system design created 
the base PR architecture, partitioned into the static region and 
PRRs, whereas application design consisted of partitioning any 
application to run on a pre-defined PR base system. This 
separation introduced a base system reuse mechanism, enabling 
application designers to develop multiple applications using a 
single base architecture. The authors defined several desirable 
key aspects for PR base system design including modularity, 
high levels of abstraction, and orthogonalisation concerns, such 
as the separation of inter-module communication and module 
computation. Sonic-on-a-Chip’s communication architecture 
allowed dynamic streaming channel establishment directly 
between PRRs by allocating slots on a time-multiplexed bus. 
However, due to long routing delays, the reported bus clock 
frequency was 50 MHz. 

Koch et al. [20] presented ReCoBus, a PR architecture for 
the Virtex-2 Pro (based on a reconfigurable multibus [10] 
adapted for FPGA implementation [6]), and an associated 
builder tool to automate system design. A Microblaze processor 
connected several fine-grained PRRs (each PRR was only one 
CLB wide) through a horizontal bus named ReCoBus that 
included interfaces for standard bus protocols such as AMBA 
(Advanced Microcontroller Bus Architecture) from ARM [13], 
Wishbone from Opencores [33], and CoreConnect from IBM 
[15]. Architectural parameters included PRR height, number of 
PRRs, and data bus width.  Since ReCoBus used custom-slice 
macros to accommodate horizontal bit and address lines 
crossing all PRRs, bus propagation delay degraded the 
maximum attainable clock frequency. The maximum clock 
frequency for a system with 60 PRRs was 50 MHz.  

Sudarsanam et al. [23] developed PolySAF, a PR 
architecture for reconfigurable processing based on systolic 
kernels for the Virtex-4 using a Microblaze connected to a set 
of PRRs. PR enabled dynamic replacement of systolic kernels 
inside PRRs. The communication architecture used a 
multiplexed FIFO-based interface for communication between 
adjacent PRRs (PRRs placed next to each other in the 
floorplan) and between the Microblaze and the PRRs. An 
analytical performance model evaluated the effect of the 
number of PRRs and PRR sizes (which determines the 

complexity of the systolic kernels that can be loaded inside the 
PRRs) on an application’s performance. 

3. VAPRES Architecture  
VAPRES [17] is a multipurpose PR FPGA SoC composed 

of a soft-core Microblaze processor in the static region 
connected to a set of PRRs. VAPRES introduces several novel 
architectural features, such as the ability to operate hardware 
modules at independent and configurable clock frequencies 
(local clock domains). Figure 1 depicts the VAPRES 
architectural layout comprised of two fundamental regions: the 
controlling region and the data processing region.  

3.1. Controlling Region 
VAPRES’s controlling region contains a Microblaze 

processor and a set of static peripherals. The controlling region 
is responsible for three main functions: controlling data 
processing region operation via PRSockets (Section 3.3.2), 
performing system-level functions such as reading hardware 
module bitstreams from external memory and performing PR 
via the ICAP, and executing software modules.  

3.2. Data Processing Region 
The data processing region contains one or more 

reconfigurable streaming blocks (RSBs). Each RSB has several 
PRRs (each RSB can have a different number of PRRs), I/O 
modules (IOMs), and an inter-module communication 
architecture called SCORES – a Scalable COmmunication 
architecture for REconfigurable System [18]. IOMs and 
SCORES are located inside the static region of the system.  

Figure 1 depicts a sample VAPRES system with one RSB 
containing three PRRs and two IOMs. PRRs and IOMs within 
each RSB communicate using SCORES. IOMs directly 
interface to external I/O pins or peripherals (i.e. ADCs, DACs, 
sensors, etc.). PRRs interface with the Microblaze processor 
through asynchronous FSL (fast simplex link) interfaces. For 
each switch box-PRR or switch box-IOM pair, a PRSocket 
allows the Microblaze processor to control switch box, 
hardware module, IOM, and module interface operation. 
PRSockets contain one device control register (DCR) [27] and 
additional interfacing logic. The DCR connects as a slave 
peripheral to the Microblaze processor through a PLB-to-DCR 
(Processor Local Bus) bridge.  

3.2.1. SCORES Architecture 
Figure 2 depicts the top-level design of the SCORES 

communication architecture. SCORES is composed of a linear 
array of switches (one switch is highlighted in gray shading). 
Each switch has a unique X coordinate indicating its horizontal 
position inside the linear array. Switches communicate with 
neighboring switches (Kl and Kr) and computing module 
interfaces (Ki and Ko) through bidirectional communication 
links between their input and output ports.  

In VAPRES, a computing module can either be a PRR or an 
IOM. Computing modules attach to switches through two types 
of module interfaces. Consumer Interfaces connect a 
computing module’s input port to a switch’s local output port 

 
Figure 1: VAPRES architectural layout showing a single reconfigurable 

streaming block (RSB) 



(Ko). Producer Interfaces connect a computing module’s 
output port to a switch’s local input port (Ki).  

Dynamically established Data Streaming Routes (DSRs) 
enable data transmission between two computing modules. 
These dedicated routes provide high throughput and low 
latency data transmission. For each DSR, we refer to the 
producer as the module sending data and the consumer as the 
module receiving data. A computing module can be both a 
producer and consumer simultaneously. 

SCORES is a highly parametric communication 
architecture with six tunable architectural parameters: N, W, Kr, 
Kl, Ki, and Ko (Figure 2). N represents the number of switches 
in the linear array. W is the width of the communication links 
and switch input and output ports. Ki, Ko, Kr, and Kl represent 
the number of local input ports, local output ports, right output 
and left input ports, and left output and right input ports, 
respectively, for each switch. Thus, a switch has Kl and Kr 
communication links to the left and right neighboring switches, 
respectively. 

3.2.2. Switch Architecture 
Figure 3 depicts the block level diagram of the SCORES 

switch architecture. The switch uses distributed arbitration and 
contains two main block types: input blocks and output blocks. 
Input and output blocks enable data to flow into and out of the 
switch, respectively. These blocks encapsulate and manage a 
switch’s input and output ports. External connections between 
neighboring switch’s input and output blocks, and internal 
connections between input and output blocks collectively 
enable inter-module communication. 

Output blocks are units responsible for controlling switch 
output ports. Output blocks are classified into three different 
types: left, right, and local output blocks. Left and right output 
blocks are responsible for all left and right output port 
management for the switch, respectively. To enable horizontal 
data transmission through the linear switch array, a switch’s left 
output blocks are connected to the neighboring switch’s right 
input blocks and vice versa. To enable internal data 
transmission through a switch, left output blocks are internally 
connected to right input blocks and vice versa. Each switch has 
only one left and one right output block, but each block can be 
connected to multiple output ports. Local output blocks are 
responsible for local output port management, which connect 
the switch to computing module interfaces. 

Input blocks are similar to output blocks in that there are 
three types of input blocks: left, right, and local input blocks. 
Each block type serves a similar purpose as the associated 
output block type. In contrast to left and right output blocks, 
there is one input block for each input port. Depending on the 
input block type, input blocks are connected with a subset of 
output blocks. Left input blocks are internally connected to the 
right output block and to all the local output blocks. Right input 
blocks are internally connected to the left output block and to 
all the local output blocks. Finally, each local input block is 
connected to both the left and right output blocks.  

3.3. Local clock domains (LCDs) 
Local clock domains (LCDs) enable a PRR to regulate data 

processing throughput. For example, in a system with a series 
of digital filter hardware modules and a fixed processing 
throughput requirement, some hardware modules may require 
more processing cycles and a higher clock frequency than other 
hardware modules. To provide this configurability, the 
VAPRES static region and PRRs are independently clocked, 
and each constitutes a separate LCD. The Microblaze sets LCD 
clock frequencies using the PRSocket. The asynchronous 
FIFOs inside the FSLs and module interfaces provide isolation 
between the PRRs and the static region LCDs.  

In order to implement PRRs as LCDs on the Virtex-4, PRRs 
must be constrained to fit inside a group of adjacent Virtex-4 
local clock regions [12]. Virtex-4 local clock regions vertically 
span sixteen CLBs and horizontally span half of the FPGA 
fabric. To ensure successful system implementation, local clock 
regions used by different PRRs may not intersect. In addition, 
we used Virtex-4 regional clock buffers (BUFRs) [12] to 
implement buffered clock signals inside each PRR and Virtex-4 
clock multiplexer primitives (BUFGMUX) to generate the 
clock signals feeding the BUFR's clock inputs. Since a Virtex-4 
BUFR can only drive the two regional clock nets in the same 
local clock region where the BUFR is located and the two clock 
nets in the adjacent local clock regions (up to three local clock 
regions), the PRR height must be no greater than 3x16=48 
CLBs. The Microblaze configures PRR clock frequencies 
during runtime using the PRSocket, which connects to the 
BUFGMUX select signals. We implemented the multiple clock 
signals feeding the BUFGMUX primitives using the Virtex-4 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Top SCORES communication architecture. In VAPRES, a 
computing module can either be a PRR or an IOM 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: SCORES switch architectural components 
 

 

 

Module Interface 



DCM (Digital Clock Manager) and PMCD (Phase Matched 
Clock Divider) primitives.  

4. VAPRES Operation 
VAPRES’s operation consists of communication 

establishment to construct DSRs between communicating 
modules, computing module interface operation to transmit 
data across the DSR, RSPS assembly and module 
encapsulation, and seamless hardware module swapping. 
Whereas VAPRES operation also requires a runtime hardware 
manager to orchestrate these processes, the runtime hardware 
manager is the focus of our current work. 

4.1. SCORES Communication Channel 
Establishment 

Establishing a complete DSR from a producer module to a 
consumer module consists of establishing numerous Streaming 
Data Channels (SDCs) spanning the switch path between the 
two modules. SDCs, illustrated in Figure 4, connect a switch 
with neighboring switches and computing modules. The link 
consists of two opposite flowing data channels and three 
handshaking signals. The SDC is the main channel and 
transmits data from a switch or computing module output port 
to the connected input port. For a data channel of W bits, the 
two most significant bits (MSBs) of the SDC are reserved for 
signaling. The MSB is the Write Enable (WR_EN) and 
indicates that the producer is transmitting a word. The second 
MSB is the End of Stream (EOS) and indicates that the 
producer has completed data transmission and that the DSR can 
be released. The remaining W-2 least significant bits (LSBs) of 
the SDC carry data. The Stream Feedback Channel (SFC) is a 
single signal, Remote FIFO Full, which indicates that the 
consumer FIFO is full, and therefore the producer must pause 
data transmission. The handshaking signals (REQ and ACK) 
establish and release a DSR. 

When a producer requests DSR establishment with a target 
consumer interface, the producer writes an Address Header to 
the SDC of its producer interface. The Address Header is 
composed of two fields, an X coordinate and a local identifier. 
The X coordinate indicates the horizontal location of the target 
switch connected to the consumer interface. The local identifier 
indicates the specific local output port to use between the target 
switch and the consumer interface. Use of a local identifier 
enables computing modules to separate different data stream 
types to different input ports. X coordinate and local identifier 
widths depends on the N and Ko architectural parameters 

After the producer interface receives the Address Header, 
the producer interface writes the Address Header to the 
connected switch’s input port and asserts REQ. The switch 
selects an arbitrary left or right (direction determined by the X 
coordinate field) output port that is not already assigned to a 

DSR and forwards the Address Header and asserts REQ on this 
output port. The connection between the input and output port 
is now reserved for this DSR. This similar process repeats as 
the Address Header propagates through neighboring switches 
until the Address Header reaches the target switch, in which 
case the Address Header is forwarded to the target consumer 
interface.  

When the target consumer interface receives a REQ, the 
consumer interface enters an Established Connection State and 
replies with a positive ACK. This ACK propagates through the 
switch array back to the producer interface, traversing the 
reserved input/output port connections at each switch. When 
the producer interface receives the asserted ACK, a DSR has 
been established between the producer and consumer 
interfaces. 

After DSR establishment, data can be transmitted between 
the producer and the consumer as a continuous low latency 
pipelined stream because our switch design uses only one 
register at each input port instead of a large, high latency FIFO. 
The DSR remains established as long as the producer interface 
asserts REQ. A producer interface deasserts REQ when the 
producer interface detects assertion of the EOS flag from the 
producer module.  

4.2. Computing Module Interface Operation 
Computing module interfaces connect computing modules 

to a SCORES switch. These module interfaces are based on 
dual-clocked FIFOs. These FIFOs buffer data and enable clock 
domain isolation between the communication architecture and 
the computing modules. By separating clock domains, each 
computing module can run at an independent and optimized 
clock frequency.  

We created FIFOs using the Xilinx Coregen FIFO 
Generator 4.3 [29]. This tool enables customization of both 
FIFO depth and width (of which the width was set to match the 
switch’s W architectural parameter). Xilinx Coregen tool allows 
FIFOs to be implemented using distributed memory or 
embedded BlockRAMs. 

 

 

 

 

Figure 4: A SCORES Streaming Data Channel (SDC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Module interfaces: (a) producer interface, (b) consumer interface. 
 

 

 

 



Figure 5 (a) illustrates the detailed producer module 
interface architecture. Signals between the module output port 
and the producer interface are: Data_in, WR_EN (Write 
enable), OS_RDY (Output Stream Ready), EOS (End of 
Stream), and DENY. The FIFO’s data input (in) and output 
(out) are the combination of data_in, EOS, and WR_EN. The 
producer module asserts WR_EN to begin data transmission to 
the producer interface. The producer module asserts EOS when 
data transmission has completed, allowing the producer module 
interface to release the DSR.  

Figure 5 (b) illustrates the detailed consumer module 
interface architecture. Signals between a module input port and 
the consumer interface are: data_in, RD_EN (Read Enable), 
IS_RDY (Input Stream Ready), and EOS (End of Stream). The 
module asserts RD_EN to enable reading from the FIFO. The 
module interface asserts IS_RDY when the FIFO contains data 
waiting to be read. Since the MSB of data_in indicates 
WR_EN, data_in coming from the switch’s local output port is 
written into the FIFO if WR_EN is asserted.  

4.3. RSPS Runtime Assembly and Module 
Encapsulation 

The process of RSPS runtime assembly consists of placing 
hardware modules in PRRs and establishing on-demand inter-
module communication through SCORES. RSPSs assembled 
using SCORES approximates a Kahn Process Network (KPN), 
a widely used model for implementing streaming digital signal 
processing systems [22]. Hardware modules map to KPN nodes 
and module interface FIFOs and FSLs map to KPN stream 
buffers. Figure 6 shows a possible mapping of nodes and 
buffers of an example KPN inside a VAPRES RSB. 

Hardware modules read/write data from/to module 
interfaces and FSLs through FIFO-based ports, which offer 

advantages over alternative NoC architecture interfaces [2][5]. 
First, hardware modules can read/write to/from FIFOs using a 
simple, well-known communication protocol instead of the 
complex addressing and synchronization schemes common in 
NoCs. FIFOs transparently implement blocking-read and 
blocking-write synchronization mechanisms when hardware 
modules detect FIFO empty and FIFO full signals, respectively. 
Secondly, FIFO-based ports increase the system design 
abstraction level, enabling application designers to develop 
hardware modules independently of VAPRES architecture 
details. However, application designers must encapsulate 
hardware modules (the original modules) inside special module 
wrappers to connect the original module’s input and output 
ports with the external FIFO-based ports. 

4.4. Hardware Module Switching Methodology 
Efficiently leveraging PR for hardware module switching 

presents several challenges. First, PR imposes stream 
processing interruption because the reconfigured PRR must halt 
operation as the new hardware module is loaded. However, 
since the new hardware module is downstream from other 
hardware modules, the upstream hardware modules must halt 
operation. Since PRR reconfiguration can take on the order of 
hundreds of milliseconds [9][16], this stream processing 
interruption may be unacceptable. In some cases, module 
interface FIFOs can buffer data to alleviate stream processing 
interruption. However, for RSPSs with high stream processing 
throughput requirements, FIFOs may fill quickly, resulting in 
significant stream processing delays. Second, in many RSPSs, a 
new hardware module’s initial operational state must match the 
replaced hardware module’s current operational state. 
Additionally, the replaced hardware module may have 
computed dynamic variables required by the new hardware 
module. The capability to save and restore state registers inside 
hardware modules enables the operational state and dynamic 
variables to be transferred from the replaced hardware module 
to the new hardware module. 

VAPRES addresses these challenges using a custom 
hardware module switching methodology. Figure 7 exemplifies 
this methodology using a digital filter example where circled 
numbers indicate intermediate steps. The system is composed 
of one RSB with one IOM and two PRRs. P0, p1, and p2 
denote the producer module interface FIFOs and c0, c1, and c2 
denote the consumer module interface FIFOs. R0, r1, and r2 
denote the FSL links flowing towards the Microblaze and t0, t1, 
and t2 denote the FSL links flowing towards the PRRs/IOMs. 

 
Figure 6: Kahn process network inside a VAPRES RSB 

 
Figure 7: Switching digital filters (hardware modules) inside a VAPRES RSB: (a) Initial RSPS operation and placement of filter B in the second PRR; 
b) Intermediate RSPS operation and detection of the end of stream condition; (c) Final RSPS operation. Circled numbers indicate intermediate steps. 

 



This example assumes that prior to RSPS operation, the 
Microblaze placed filter A inside the first PRR and configured 
switch boxes SW1 and SW2 to establish DSR between p0 and 
c1 and between p1 and c0.   

The RSPS initially operates as follows: filter A receives 
streamed input data from the IOM and sends the processed 
streamed output data back to the IOM (step 1). While filter A 
processes data, filter A periodically sends monitoring 
information about input data characteristics through r1 to the 
Microblaze processor (step 2). The Microblaze evaluates this 
monitoring information to determine if filter B would better 
meet the design constraints (i.e. reduced power, higher 
precision, etc.). If filter B is determined to be more appropriate, 
the Microblaze reconfigures the second PRR to store filter B 
while filter A continues data processing (step 3). 

After the second PRR reconfigures to filter B, the 
Microblaze configures the switch boxes to release the DSR 
between p0 and c1, in addition to establishing a new DSR 
between p0 and c2 (step 4). Filter A continues processing the 
remaining data words present in the consumer interface FIFO. 
After processing the remaining data, filter A sends a special end 
of stream word to the IOM (step 5) and the state register values 
to the Microblaze through r1 (step 6). The Microblaze 
initializes filter B using the state register values (step 7). After 
the IOM detects the special end of stream word arriving from 
c0, the IOM informs the Microblaze that filter A operation has 
completed by writing a message through r0 (step 8). The 
Microblaze configures the switch boxes to connect p2 and c0, 
completing hardware module switching (step 9). 

This hardware module switching methodology overlaps 
module operation with PRR reconfiguration, which avoids 
stream processing interruption. The new hardware module is 
placed outside the current RSPS processing path and begins 
operation only after PRR reconfiguration has finished.  

5. Analysis and Results 
To validate and evaluate the overheads and performance of 

our system, we evaluate both a complete VAPRES prototype 
with fixed a SCORES configuration and SCORES separately 
using numerous architectural parameters. 

5.1. VAPRES Prototype 
We implemented a VAPRES prototype system on a Xilinx 

ML401 evaluation board to test system functionality and 

evaluate the reconfiguration time for individual PRRs. Figure 8 
depicts the FPGA fabric layout consisting of one RSB with two 
PRRs and one IOM (sufficient for functionality testing 
purposes). We customized the inter-module communication 
architecture with two 32-bit channels flowing both left and 
right between switch boxes and one 32-bit module input port 
and one 32-bit module output port connecting PRRs to switch 
boxes. Module interface FIFOs and FSL links were 
implemented using Virtex-4 BlockRAM, which buffer 512 32-
bit words. The Microblaze processor and switch boxes 
executed at 100 MHz. In addition, PRRs were constrained to fit 
inside separate Virtex-4 local clock regions and contained 640 
slices, which spanned sixteen vertical CLBs and ten horizontal 
CLBs. We point out that these PRR sizes are relatively small, 
and larger PRRs might be required for applications with larger 
hardware modules, but however are sufficient for testing 
purposes. 

The VAPRES static region (including the Microblaze soft-
core processor and SCORES) required 9,421 slices 
(approximately 86% of the VLX25), of which SCORES 
required only 1,020 slices (approximately 9% of the VLX25 
device). We generated both static and partial bitstreams with 
the Xilinx Early Access Partial Reconfiguration Flow [28]. 
Hardware module partial bitstreams were stored as files in 
external flash memory.  

We evaluated PRR reconfiguration time for two of the 
VAPRES functions using the Microblaze xps_timer peripheral. 
The first function transfers the partial bitstream from the 
external compact flash memory to the ICAP port and the 
second function transfers a partial bitstream from an array 
stored in SDRAM to the ICAP port. Reconfiguration of a single 
PRR using a bitstream from flash memory required 
1,043,388,614 clock cycles (1.043s) of which transferring the 
partial bitstream from flash memory to the ICAP BRAM buffer 
accounted for 95.3% of the time and writing the partial 
bitstream to the ICAP accounted for 4.7% of the time. 
Reconfiguration of a single PRR was reduced to 71,944,572 
clock cycles (71.94 ms) when using a bistream from SDRAM 
(the partial bitstream was copied from flash memory to an array 
in the SDRAM at system startup). Since partial bitstream size 
will directly influence reconfiguration time and thus system 
performance, a focus of our future work includes analyzing the 
tradeoffs between resource fragmentation and system 
performance for large verses small PRRs. In addition, we will 
explore mechanisms to prefetch bitstreams to the SDRAM to 
further reduce reconfiguration overhead for systems where 
bitstream storage requirements exceeds SDRAM resources. 

5.2. SCORES Evaluation 
We implemented our SCORES communication 

architecture, switch, and module interfaces as highly parametric 
VHDL soft cores, providing the architectural parameters: N, W, 
Kr, Kl, Ki, and Ko. FIFOs, implemented using one embedded 
BlockRAM, stored 512 32-bit words. The target device was a 
Virtex 4 XC4VLX25 [30] and system simulation was 
performed using Modelsim 6.2 SE [21]. 

Given the massive configurability of SCORES due to the 
numerous architectural parameters, we wrote a Perl script to 

 
Figure 8: VAPRES prototype floorplan on the VLX25 indicating 

location of regional clock buffers (BUFRs) and slice macros. 



execute Xilinx synthesis and implementation tools (ISE 10.1) 
[32] for a standalone switch of varying configurations. These 
configurations enabled architectural parameter impact 
evaluation on selected performance metrics such as slice 
utilization and maximum clock frequency. In a real scenario, 
Kr, Kl, Ki and Ko would be specialized to the target 
application. We measured maximum clock frequency after 
place-and-route using the Xilinx Trace static timing analysis 
tool with no clock constraint (trce –a –u).  

 Figure 9 shows area usage in slices (top row) and 
maximum attainable clock frequency (bottom row) versus 
varying architectural parameters for channel widths W = 8, 16, 
32, and 64 bits for a single switch. The first, second, and third 
columns vary Kr, Kr and Kl, and Ki and Ko, respectively. We 
consider the case in which only Kr is varied to account for 
applications in which most data flow occurs in only one 
direction such as DSP or image processing. Figure 9 (top row) 
shows low switch area overhead, which scales well due to a 
small cross point matrix. For example, the area overhead for a 
sample system configuration, W = 32, Kr = 2, Kl = 2, Ki = 1, 
and Ko = 1, is only 399 slices, which accounts for 1.62% of the 
XC4VLX25. Doubling the channel width from W = 32 to W = 
64 (with the same system configuration Kr = 2, Kl = 2, Ki = 1, 

and Ko = 1) increases slice usage by only 60% to only 639 
slices, revealing a sublinear increase in area verses channel 
width.  

Maximum clock frequency is a very important metric since 
it determines the maximum data throughput achievable by 
SCORES. Given a data word of length W, (with the two MSBs 
reserved for WR_EN and EOS) the peak data throughput in 
Gbps for SCORES is: 

 
Figure 9 (bottom row) shows that for all test configurations, 

the operating frequency ranges from 161 MHz to 311 MHz. 
Therefore, the data throughput peaks at 161*(32-2) = 4.8 Gbps 
for an SDC width of W = 32 bits, which is competitive with 
previous work. 

6. VAPRES System Design and 
Implementation 

Creating an FPGA-based PR SoC using the VAPRES 
architecture requires two design flows: (1) the base system flow 
assists system designers in creating a VAPRES base system 
(Figure 10 right), and (2) the application flow assists 
application designers in creating applications to run on the 
VAPRES base system (Figure 10 left). 

6.1. Base System Flow 
In the base system flow’s first step, the system designer 

determines the base system specifications by specializing the 
VAPRES architectural parameters. In order to leverage 
reusability and architectural specialization, Figure 11 shows the 
VAPRES architectural parameters for a single RSB. 
Architectural parameters include the maximum number of 
PRRs (N), communication channel width (w bits), number of 
one-way communication channels between switch boxes (kr 
channels flowing to the right and kl channels flowing to the 
left), and the number of input channels (ki) and output channels 
(ko) between each PRR and the connected switch box. This 
architectural specialization supports a wide variety of hardware 
module and application requirements and enables system 

 

Figure 9: Area in slices (top row) and maximum clock frequency (bottom row) verses varying architectural parameters for channel widths W = 8, 16, 32, and 64 
bits. 

 
 Figure 10: VAPRES design and implementation flows 



designers to balance resource utilization with communication 
flexibility.  

In the base system design step, the system designer designs 
the base system floorplan and creates the system definition files. 
System definition files include the VHDL code modeling the 
static region, a Microprocessor Hardware Specification (MHS) 
file defining the system structure for the Xilinx EDK tool 
platgen, a Microprocessor Software Specification (MSS) file 
defining the base system build process for the Xilinx EDK tool 
libgen, and a User Constraints File (UCF) representing the 
system floorplan.  

To ensure that the VAPRES floorplan is suitable for the 
Virtex-4, system designers must ensure that each PRR fits 
inside one to three adjacent local clock regions and that local 
clock regions used by different PRRs do not intersect. In 
general, three adjacent local clock regions are required for 
PRRs containing large hardware modules, but large PRRs can 
increase resource fragmentation (wasted resources when a 
hardware module requires fewer resources than a PRR 
provides). An alternative solution constrains PRRs to fit within 
one local clock region, and hardware modules that require more 
resources than a PRR provides can span multiple adjacent 
PRRs. Finally, the synthesis and implementation steps generate 
the base system’s static bitstream.  

6.2. Application Flow 
After downloading the base system’s bitstream to the FPGA 

device, an application designer designs applications for the base 
system. The application designer decomposes an application 
into software and hardware modules using hardware/software 
co-design techniques. After decomposition, the hardware and 
software modules follow two separate flows. During the 
software module design flow, the application designer writes 
the application software that will run on the Microblaze 

processor. In order to assist the application designer in writing 
software modules for the VAPRES systems, Application 
Program Interface (API) functions provide low-level system 
functionality (Table 1).  

During the hardware module design flow, the application 
designer designs the hardware modules and hardware module 
wrappers. Application designers are insulated from low-level 
PR design tasks involving PRR definition, floorplanning, and 
other base system implementation details. However, the 
application designer must consider the number of, data-width, 
and type of input and output ports connected to each hardware 
module. A hardware module’s input and output port type can 
be an FSL slave (reads data from an FSL link), an FSL master 
(writes data to an FSL link), a consumer port (reads data from a 
consumer interface), or a producer port (writes data to a 
producer interface). During the application flow, only logic 
associated with each hardware module is synthesized and 
placed and routed, as the base design logic remains unchanged. 
This isolation between the application flow and the base system 
flow reduces synthesis and place and route times, which 
otherwise can be exceedingly high during the iterative 
development and testing stages of large, complex designs. 

 
7. Conclusions and Future Work 

In this paper, we designed and prototyped VAPRES – a  
multipurpose PR FPGA SoC. VAPRES enables intense 
architectural specialization to meet design constraints through 
numerous architectural parameters and local clock domains. A 
novel hardware module switching methodology enables 
dynamic system reconfiguration without stream processing 
interruption. In order to assist system and application designers 
in developing VAPRES base systems and applications, we 
formulated two customized design flows. Future work includes 
additional design support in the form of scripting tools for 
system floorplan definition and system definition file creation.  

8. Acknowledgements 
This work was supported in part by the I/UCRC Program of 

the National Science Foundation under Grant No. EEC-
0642422. We gratefully acknowledge tools provided by Xilinx. 

9. References 
[1] J. Bakos, P. Elenis, J. Tang. FPGA Acceleration of 

Phylogeny Reconstruction for Whole Genome Data. 7th 
IEEE International Symposium on Bioinformatics & 
Bioengineering, 2007 

[2] E. Beigne, P. Vivet. Design of on-chip and off-chip 

 Figure 11: Sample RSB with the following architectural parameters: 
N=4, w=32, kr=2, kl=2, ki=1, ko=1 

Function Purpose 
int vapres_CF2ICAP(XHwIcap *hwicap, Xuint8* filename) ; Transfers a partial bitstream stored as a file in CF memory to ICAP port 
int vapres_array2ICAP(XHwIcap *hwicap, char* bitstream) ; Transfers partial bitstream stored as a bitstream array in SDRAM to ICAP port. 
int vapres_CF2array(char* bitstream, int* size, Xuint8* filename) ; Transfers a partial bitstream file from CF memory to a bitstream array in SDRAM. 

Array size is returned on argument size. 
int vapres_module_clock (int num, bool enable); Enables the regional clock buffer (BUFR) for HW module identified by num 
int vapres_module_reset(int num, bool assert); Resets the HW module identified with number num 
int vapres_module_write(int num, int value); Writes value to hardware module input identified with number num 
int  vapres_module_read(int num, int value); Reads a value from the num-th hardware module identified with number num 
int vapres_establish_channel(comm._state* current_state, Xuint8 prrx, Xuint8 prry) Establishes a streaming channel between PRRs identified with number X and Y 

Table 1: Sample VAPRES API functions. 

 



interfaces for a GALS NoC architecture. 12th IEEE 
International Symposium on Asynchronous Circuits and 
Systems, 2006. March 2006 

[3] L. Benini and G. De Micheli. Networks on chips: A new SOC paradigm. 
In IEEE Computer, pages 70-78, 2002 

[4] N. Bergmann, J. Williams, and P. Waldeck. Egret: A 
Flexible Platform for Real-Time Reconfigurable System-
on-Chip. International Conference on Engineering of 
Reconfigurable Systems and Algorithms, 2003. 

[5] C. Bobda. Introduction to Reconfigurable Computing. 
Architectures, Algorithms and Applications. Springer, 
2007 

[6] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, 
and J. Teich. Increasing the Flexibility in FPGA-based 
Reconfig-urable Platforms: The Erlangen Slot Machine. 
IEEE Conference on Field-Programmable Technology 
(FPT), 2005 

[7] C. Conger, A. Gordon-Ross. A. George.  FPGA Design 
Framework for Partial Run-Time Reconfiguration. ERSA, 
2008. 

[8] T. Court, M. Herbordt. Families of FPGA-Based 
Accelerators for Approximate String Matching. ACM 
Microprocessors & Microsystems, v. 31, Issue 2, 2007 

[9] E. El-Araby, I. Gonzalez, T. El-Ghazawi: Exploiting 
Partial Runtime Reconfiguration for High-Performance 
Reconfigurable Computing. ACM Trans. on Reconf. 
Technology and Systems (TRETS), 2009 

[10] H. A. ElGindy, A. K. Somani, H. Schroeder, H. Schmeck, 
and A. Spray. RMB - A Reconfigurable Multiple Bus 
Network. Proceedings of the International Symposium on 
High-Performance Computer Architecture (HPCA), 1996. 

[11] J.  Emmert, C. Stroud,  M. Abramovici. Dynamic Fault 
Tolerance in FPGAs via Partial Reconfiguration. FCCM, 
2000 

[12] E. Eto. BUFR in partial reconfigurable modules. Xilinx 
WP 344, 2008. 

[13] D. Flynn. AMBA: Enabling Reusable On-chip Designs. 
Micro, IEEE, vol. 17, no. 4, pp. 20 – 27, 1997. 

[14] R. Garcia, A. Gordon-Ross, and A. George. Exploiting 
Partially Reconfigurable FPGAs for Situation-Based 
Reconfiguration in Wireless Sensor Networks. FCCM 
2009. 

[15] A. Goel and W. R. Lee. Formal Verification of an IBM 
CoreConnect Processor Local Bus Arbiter Core. Design 
Automation Conference, 2000. Proceedings 2000. 37th, 
2000, pp. 196 – 200. 

[16] R. Hymel, A. D. George, H. Lam. Evaluating Partial 
Reconfiguration for Embedded FPGA Applications.  
HPEC, 2007 

[17] A. Jara-Berrocal and A. Gordon-Ross. VAPRES: A 
Virtual Architecture for Partially Reconfigurable 
Embedded Systems.  IEEE/ACM Design, Automation and 
Test in Europe (DATE), March 2010. 

[18] A. Jara-Berrocal and A. Gordon-Ross. SCORES: A 
Scalable and Parametric Streams-Based Communication 
Architecture for Modular Reconfigurable Systems. 
IEEE/ACM Design, Automation and Test in Europe 
(DATE), April 2009 

[19] V. Kindratenk, D. Pointer, A case study in porting a 
production scientific supercomputing application to a 
reconfigurable computer. FCCM 2006 

[20] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder - A 
Novel Tool and Technique to Build Statically and 
Dynamically Reconfigurable Systems for FPGAS. FPL 
2008. 

[21] Mentor Graphics, http://www.mentor.com, 2008 
[22] P. Sedcole, P. Cheung, W. Luk: Run-Time Integration of 

Reconfigurable Video Processing Systems. IEEE Trans. 
VLSI Syst. 15(9), 2007 

[23] A. Sudarsanam,  R. Barnes,  J. Carver,  R. Kallam, A. 
Dasu Dynamically Reconfigurable Systolic Array 
Accelerators: A case Study with EKF and DWT 
algorithms.  In-print IET Comput. and Digit. Tech., 2010 

[24] M. Ullmann, B. Grimm, M. Hübner, J. Becker. An FPGA 
Run-Time System for Dynamical On-Demand 
Reconfiguration. IEEE Parallel and Distributed Processing 
Symposium, 2004 

[25] H. Walder, S. Nobs, M. Platzner. XF-board: A 
Prototyping Platform for Reconfigurable Hardware 
Operating Systems. ERSA 2004 

[26] J. Williams and N. Bergmann. Embedded Linux as a 
Platform for Dynamically Self-Reconfiguring Systems-
On-Chip. Engineering of Reconfigurable Systems and 
Algorithms (ERSA) 2004. 

[27] Xilinx Inc. Device Control Register Bus (DS402, v. 2.9), 
May 2005  

[28] Xilinx Inc. Early Access PR User Guide  (v1.1). March 
2006 

[29] Xilinx. FIFO Generator 4.3 Datasheet. DS317. March 24, 
2008 

[30] Xilinx Virtex 4 User Guide. UG070 v2.6. December 1, 
2008 

[31] Xilinx Inc. Virtex 4 Configuration Guide (UG071), 
January 2006 

[32] Xilinx Inc., http://www.xilinx.com, 2008 
[33] X. Xing, C. Zezong, J. Jing, and K.Hengyu. Porting from 

Wishbone Bus to Avalon Bus in SoC Design. in 
Electronic Measurement and Instruments. (ICEMI), 2007. 

 


