
A Traversal Cache Framework for FPGA Acceleration of Pointer Data Structures:
A Case Study on Barnes-Hut N-body Simulation

James Coole, John Wernsing, Greg Stitt
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL

{jcoole, wernsing, gstitt}@ufl.edu

Abstract—Numerous studies have shown that field-
programmable gate arrays (FPGAs) often achieve large
speedups compared to microprocessors. However, one
significant limitation of FPGAs that has prevented their use on
important applications is the requirement for regular memory
access patterns. Traversal caches were previously introduced
to improve the performance of FPGA implementations of
algorithms with irregular memory access patterns, especially
those traversing pointer-based data structures. However, a
significant limitation of previous traversal caches is that
speedup was limited to traversals repeated frequently over
time, thus preventing speedup for algorithms without
repetition, even if the similarity between traversals was large.
This paper presents a new framework that extends traversal
caches to enable performance improvements in such cases and
provides additional improvements through reduced memory
accesses and parallel processing of multiple traversals. Most
importantly, we show that, for algorithms with highly similar
traversals, the traversal cache framework achieves
approximately linear kernel speedup with additional area, thus
eliminating the memory bandwidth bottleneck commonly
associated with FPGAs. We evaluate the framework using a
Barnes-Hut n-body simulation case study, showing application
speedups ranging from 12x to 13.5x on a Virtex4 LX100 with
projected speedups as high as 40x on today’s largest FPGAs.

Keywords-FPGA, traversal cache, pointers, speedup

I. INTRODUCTION
Much previous work has shown that field-programmable

gate arrays (FPGAs) can achieve order of magnitude
speedups compared to microprocessors for many important
embedded and scientific computing applications [3][4][9].
However, one limitation of FPGAs that has prevented
widespread usage is the requirement for regular memory
access patterns (i.e., sequential streaming of data from
memory) due to the heavily-pipelined circuits common in
FPGA implementations. Applications with irregular memory
access patterns, such as pointer-based data structure
traversals, achieve much lower memory bandwidth due to
increased row-address-strobe (RAS) operations and memory
indirection caused by pointer accesses. Consequently, this
lower memory bandwidth results in many pipeline stalls,
which waste large amounts of parallelism, often resulting in
limited or even no FPGA speedup.

Previous work [12] partially addressed the inefficiency of
irregular memory access patterns on FPGAs by using a

traversal cache framework that identified repeated traversals
of pointer-based data structures (which had irregular access
patterns), reordered the repeated traversals into a sequential
sequence of data, and then stored the reordered data into a
traversal cache that efficiently streamed data to the FPGA.
Although that framework improved FPGA performance,
speedup was limited to repeated data structure traversals,
which are not common in many important applications.

In this paper, we present an improved traversal cache
framework that eliminates many limitations of previous
work, increasing the number of applications amenable to
FPGA speedup. The improved framework is motivated by
the observation that although many applications do not have
repeated traversals, many applications do exhibit a large
percentage of similarity between traversals. To exploit this
similarity, the improved traversal cache framework stores
multiple traversals, represented by an application-specialized
data structure, in a traversal cache. Unlike previous work that
only improved performance of repeated traversals, the
improved framework improves performance of similar
traversals by enabling multiple traversals to be performed in
parallel based on the amount of similarity. Furthermore, if an
application does repeat traversals, the improved framework
maintains all of the advantages of the previous approach.

Figure 1 provides an overview of traversal caches for an
application that traverses a tree-based data structure. The
previous approach, shown in Figure 1(a), does not achieve
speedup due to a lack of repeated traversals (i.e., a 100%
traversal cache miss rate). For any non-repeated traversal, the
previous approach requires the microprocessor to compute
the new traversal and update the traversal cache with the data
included, often creating a bottleneck. On a cache miss, unlike
previous approaches, the presented framework transfers a
specialized representation of the data structure to the
traversal cache, which enables the FPGA (as opposed to the
microprocessor) to generate multiple traversals in parallel
based on the amount of similarity. By transferring all the
data necessary to compute any traversal, the improved
approach effectively improves memory bandwidth by
reusing data across multiple datapaths, thus enabling
additional datapath replication (e.g., increased loop
unrolling). In fact, the experimental results show that the
memory bandwidth bottleneck is almost completely
eliminated for highly-similar traversals, resulting in kernel
speedup that increases approximately linearly with area. To
deal with differences in traversals, the framework uses a

Figure 2. System architecture used by the traversal cache framework.

Figure 1. Traversal cache overview. (a) Previous approaches often lack
speedup due to unrepeated traversals. (b) The improved traversal cache

framework exploits similarity between traversals, enabling datapath
replication by reducing memory accesses and delivering appropriate

membership data to each datapath.

 membership function to exclude inappropriate data from
reaching each corresponding datapath. For the example in
Figure 1(a), the previous approach would have required 16
memory accesses and 16 traversal cache accesses, limiting
the FPGA to process a single traversal at a time. The
improved approach, shown in Figure 1(b), requires only 7
memory accesses and 7 traversal cache accesses, which
enables the FPGA to process 3 parallel traversals, resulting
in a speedup of approximately 3x.

 Note that the framework is not intended to automatically
speedup an application; instead, a designer must provide the
framework with necessary application-specific information.
In this paper, we evaluate the framework using a Barnes-Hut
n-body simulation [6] and discuss how the framework could
be used for other applications. Barnes-Hut is a motivational
example for the traversal cache framework because for n-
body simulations on FPGAs, Barnes-Hut is typically avoided
due to irregular memory access patterns resulting from the
use of a quad-tree. Instead, FPGA implementations often use
a straightforward O(N2) implementation that does not require
a tree data structure. Although this straightforward
implementation enables highly parallel FPGA execution,
software execution of O(NlogN) versions of Barnes-Hut
eliminates FPGA speedup for large problem sizes. The
traversal cache framework enables highly parallel FPGA
execution of the O(NlogN) versions of the Barnes-Hut
algorithm, with application speedup ranging from 12x to
13.5x on a Virtex4 LX100 and projected speedups as high as
40x on today’s largest FPGAs. For a simulation involving
1e5 particles, previous approaches using the O(N2) algorithm
would have to achieve a 500x speedup to match Barnes-Hut
implemented in software, or a 6800x speedup to match the
performance of our approach.

The paper is formatted as follows. Section II discusses
previous work. Section III describes the traversal cache
framework. Section IV presents experimental results for an
implementation of the Barnes-Hut n-body algorithm using
the framework.

II. PREVIOUS WORK
In addition to the prior traversal cache work discussed in

the introduction, there are several other areas of research
related to traversal caches. Smart buffers [8] are specialized
FPGA data caches, similar to traversal caches, which store
reused data for sliding window operations. Smart buffers
prevent reused data from being read multiple times from
memory, which improves bandwidth and increases datapath
replication. The traversal cache framework discussed in this
paper is a superset of the functionality provided by smart
buffers, also supporting pointer-based data structures and
irregular memory access patterns.

Smart memory engines [5] use FPGAs to dynamically
reorganize main memory to improve locality of pointer-
based data structures. Traversal caches also reorganize data,
but do so locally in the traversal cache as opposed to
modifying main memory, which avoids alias limitations.

Numerous high-level synthesis techniques have focused
on alias analysis to enable optimization of pointer-based
code [11]. Previous compiler and architecture studies have
focused on improving locality of pointer-based data
structures with data alignment and numerous other
optimizations [1][2][7][10]. These techniques are
complementary to traversal caches.

The Impulse memory controller [13] improves memory
performance of irregular patterns by mapping irregular
virtual patterns into regular physical patterns. Traversal
caches perform the same optimization, but do not require a
specific memory controller or operating system support.

III. TRAVERSAL CACHE FRAMEWORK

A. System Architecture
The system architecture consists of a microprocessor

with access to an FPGA accelerator, as illustrated in Figure
2. The FPGA implements pipelined datapaths that accelerate
computation-intensive kernels of an application. The
microprocessor and FPGA can be tightly coupled, resident
on the same board or device, or loosely coupled, as over a
system bus or network. Separate input and output memories

Figure 4. Traversal Generator.

Figure 3. FPGA portion of the traversal cache framework.

are assumed for streaming data through the pipelines,
accessible by both the FPGA and microprocessor. Although
the framework can support any system meeting these
requirements, we currently implement the framework using a
Nallatech H101-PCIXM FPGA accelerator attached over
PCI-X to a 3.2 GHz Intel Xeon.

B. Software
The microprocessor executes the software portion of the

application until it encounters an FPGA-implemented region.
As in previous work [12], software populates the traversal
cache before the FPGA can be used. To allow the traversal
cache to process multiple traversals simultaneously, the
software portion of the framework uses designer-specified
code to serialize the entire data structure, in the order it will
be traversed in common for all traversals. This is, in a sense,
a generalization of the previous approach which provided the
data for a single traversal at a time, in the order of the
traversal. Figure 1(b) gives an example of a serialization of
three similar traversals from Figure 1(a). The serialization
logic is currently manually specified because the serialized
encoding must be specialized for different data structures and
traversal orders. Automation is a topic for future work.

Software also places in a section of the traversal cache
any data outside the data structure necessary to compute each
traversal, which we refer to as traversal inputs. For example,
in an implementation of the Barnes-Hut n-body algorithm
(discussed in Section IV), the forces on a number of particles
are computed by traversing a tree, and those particles are the
traversal inputs. The performance of the accelerator is
maximized by the traversal cache when the traversal inputs
are ordered to maximize the similarity between the traversals
for adjacent inputs. The current framework also relies on the
software to maintain the traversal cache’s consistency by
updating the cache’s contents to reflect changes made to the
data structure. In a tightly coupled system architecture,
however, the framework could potentially be modified to
support cache coherence through snarfing or snooping.

Once the traversal cache is populated, software notifies
the accelerator to begin processing data from the cache and is
later notified by the accelerator when it is finished.
Depending on the application, the processor might be able to
do other work while waiting on the accelerator. For example,
in Barnes-Hut, the output of the accelerator can be streamed
to the microprocessor as it is computed, allowing preparation
for the next time step’s calculations to occur in parallel.

C. FPGA Framework
The FPGA portion of the traversal cache framework is

shown in Figure 3. The traversal generator computes the
traversals for batches of traversal inputs at a time until all
inputs have been used. For each batch, the number of
memory accesses is minimized by exploring the data
structure in a single pass, covering as little of the data
structure as is necessary. The traversals for each input within
the batch are computed in parallel and the elements included
in each input’s traversal are streamed out from the generator
as soon as their membership in each traversal is computed.

The accelerator’s datapath can be replicated p times, with
each replication handling a separate traversal stream
produced by the traversal generator. In addition to a single
common bus containing the current data structure element,
e.g., the current Barnes-Hut tree node, data_valid and wait
signals are provided for each datapath, informing the
datapath when elements included in that traversal are
available and allowing the datapaths to stall the generator,
respectively. If necessary, any intermediate datapath
products that might be computed in the generator kernels can
also be brought out for the datapaths.

The structure of the traversal generator is shown in
Figure 4. Generator logic is to some extent specific to the
data structure and algorithm, and therefore must currently be
designer-specified. In all cases, however, the generator
consists of a generator kernel specific to the application
replicated for each of the p parallel traversals. Each generator
kernel decides independently whether the current data
structure element is included in the traversal for its input and

guides further exploration of the data structure, for example
by skipping nodes in a tree that it knows will not be
included. Inclusion information is passed out of the generator
as data_valid signals to the corresponding datapath. For
example, in our Barnes-Hut implementation, the data_valid
signal is generated by logic testing whether to accumulate
the force due to the current tree node. In this case, since
generating this signal also involves calculating data needed
by the force calculation performed in the datapaths (the force
direction among others), those signals are also brought out
from the generator kernel for use by its datapath.

For generator kernels that guide exploration of the data
structure, the generator is also responsible for exploring as
little of the data structure as possible, while still meeting the
requirements of all its kernels. In the Barnes-Hut
implementation, for example, if all but one kernel can skip a
portion of the tree, the generator must still explore the
section for the objecting kernel while blocking that data from
reaching the other kernels. Because the kernel logic is itself
pipelined, the generator must continue to fetch elements
from the traversal cache, predicting that they will be used, to
avoid stalling excessively. Thus, kernels can continue to
receive elements that they have chosen to ignore for as long
as the pipeline latency. Kernel outputs for these elements are
invalid and must be ignored by the generator logic. For the
same reason, the kernels themselves must either be stateless
(i.e. no dependence on past data) or must be capable of
reverting their state when it’s determined that previously
received elements were invalid.

In the simplest case, the number of traversals handled by
the framework in parallel is limited to p, the number of
replicated datapath-generator kernel pairs, which is limited
by the resources available on the FPGA. The number of
parallel traversals can be increased without increasing
datapath replication by breaking them up into p-sized
subsets: for each entity in the data structure, traversals within
each set are computed in parallel and sets are processed
sequentially by swapping out the traversal inputs used by the
generator kernels. The amount of datapath replication p and
the number of p-sized sets of traversals computed together s
are the framework’s architectural parameters. The total
number of traversals considered in a batch is given by p×s.

D. Limitations
The maximum speedup using our approach is achieved

for algorithms with independent traversals in the same order,
e.g. depth-first traversal, across a data structure. In the case
that an algorithm’s traversals are dependent on previous
traversals, the framework cannot process traversals in
parallel (p=s=1). For algorithms whose traversals occur in
different orders across a data structure, the framework is
equivalent to the previous approach [12], requiring software
intervention between processing traversals.

The potential for speedup using this approach increases
with the similarity between successive traversals. Because
not all applications exhibit high similarity between
traversals, the framework does not always improve
performance. Low similarity between traversals results in
disagreement among generator kernels about which regions

of the data structure can be ignored. Since the generator must
satisfy the needs of all the kernels to maintain correctness, it
must include regions needed by any single kernel, stalling
any other kernels (and datapaths) that don’t need those
elements, reducing parallelism. Since element accesses are
grouped for traversals computed in parallel, it can also be
shown that the total number of accesses is minimized when
similarity is maximized. However, because efforts to
maximize the similarity between traversals would also
benefit pure software implementations due to caches on main
memory, implementations using the framework might
benefit from existing work along those lines.

In this paper we assume the data structure fits in the
accelerator’s memory. In situations where the size of
memory is a limitation, software could load only a part of the
data structure into memory, updating the cache with the
missing portions when they are reached during each
traversal. Though this would limit the system performance,
implementations not using a traversal cache would also be
limited by the size of available memory, and possibly sooner
since the ordering assumed by the framework allows the data
structure’s serialized form to often be smaller than the
original form in memory. More detailed analysis of the
effects of cache size is left as future work.

IV. CASE STUDY: N-BODY SIMULATION
To evaluate the traversal cache framework, we performed

a Barnes-Hut n-body simulation case study. The critical step
in n-body simulation involves computing the resultant
physical force (e.g. gravitational or electrostatic forces) on
each of N bodies due to the other bodies. The Barnes-Hut
algorithm [6] approximates the solution by recursively
subdividing space into a quad-tree or oct-tree, with internal
nodes representing an average of the leaf bodies (e.g. center
of mass or electric multipoles). For concentrated collections
of distant objects, set by a threshold ratio theta, the force is
computed due to these average nodes instead of individual
bodies. Depending on the value chosen for theta, Barnes-Hut
has a complexity ranging from O(NlogN) to O(N2), with
O(NlogN) for theta=0.5 being common in practice [6].

Our implementation of Barnes-Hut computes classical
gravitational forces in two dimensions. The quad-tree
traversal logic was implemented as a generator supporting
generic depth-first search over an n-ary tree, with traversal
kernels computing traversal membership and steering the
search according to the algorithm and a programmable theta.
Similarity between traversals is increased by loosely
ordering the bodies by spatial locality in the universe, which
is available inexpensively as the order of the leaves in the
fully constructed quad-tree. Our software implementations
also use this ordering, which we found provides a speedup of
~30% due to cache issues, as mentioned in Section III.D.
Our hardware implementation constructs the next time step’s
quad-tree in parallel with the accelerator by streaming in
accelerator outputs as they become available.
A. Experimental Setup

To evaluate the traversal cache, we implemented the
framework in VHDL, including custom generator kernels

Figure 5. N-body application speedup achieved by the traversal cache

framework on a Virtex 4 LX100 compared to a 3.2 GHz Xeon for various
numbers of particles and representative distributions.

Figure 6. For lower values of theta (i.e., less approximation in Barnes-

Hut), the traversal cache framework achieves larger application speedup.
Higher values of theta than shown are not common in practice.

 and datapaths for Barnes-Hut, using generics for the number
of traversals computed in parallel p and the number of p-
sized subsets computed sequentially s in each pass. The
framework was configured to use a single SDRAM input
memory. Cycle counts were extracted from an HDL test
bench that used a memory model of the SDRAM available
on the Nallatech H101-PCIXM, accessed through
Nallatech’s SDRAM controller. Timing was measured and
verified using a hardware implementation on the Nallatech
H101-PCIXM FPGA accelerator card.

The HDL simulation and timing data were combined to
create a model of the framework’s behavior for arbitrary
input data. From this model, we developed a C-based
simulator capable of giving accurate timing for real input
data. Because synthesizing each test case would have been
very time consuming, this C-based simulator enabled rapid
exploration of the framework’s design space, and also
allowed considering configurations that wouldn’t fit on the
H101’s Xilinx Virtex 4 LX100 FPGA.
B. Performance Results

Our traversal cache Barnes-Hut implementation was
compared to software running on a 3.2GHz Xeon. The
framework was tested with the maximum parallelism
supported by the LX100 with no sequencing within a batch
(s=1, p=25). Sequencing is discussed in the next section.
Comparisons were made for two data sets representing
extremes with respect to the similarity of traversals: bodies
distributed randomly in space (minimum similarity of 83%
for theta=0.5) and bodies uniformly distributed in a straight
line (maximum similarity of 90% for theta=0.5). Multiple
problem sizes N and values of theta were also tested. The
results are presented in Figures 5 and 6.

Figure 5 shows the application speedup of the framework
relative to software for different problem sizes and theta=0.5.
For the problem sizes tested, a speedup of between 11x and
13.5x was achieved, depending on the data set. Execution
times were lower for the high-similarity (line) data set for
both hardware and software. The increasing speedup of the
high-similarity data set is due to the task-level parallelism
made possible by the framework; since the accelerator’s run
time was smaller for this data set than the time required to
construct the next quad-tree, incremental increases in the
accelerator’s run time were hidden, resulting in a speedup
increasing with N up to a plateau. The variability in the

performance curves is primarily due to irregular growth in
the size of the quad-tree.

The effect of the algorithm’s precision parameter theta is
shown in Figure 6 for a simulation with 1e5 bodies. The
framework achieves higher application speedup for smaller
values of theta, where the algorithm’s complexity
approaches O(N2). Traversals include more elements for
these instances of the problem, resulting in a greater
reduction in total memory accesses due to the traversal cache
and, consequently, a greater speedup over software. When
compared against experimental results in [12] the data also
suggest a large speedup over previous traversal caches for
the O(N2) case. Note that comparing speedups of different
theta values is different than comparing execution times. As
theta increases, the complexity and execution time of the
algorithm decreases, which contributes to the decreasing
speedup. Furthermore, previous n-body implementations are
typically unable to achieve speedup for theta > 0.
C. Effect of Framework Parameters

The traversal cache framework can be configured for an
application through the parameters p and s, as discussed in
Section III.C. In this section we explore the effect of these
parameters for our traversal cache implementation of
Barnes-Hut. Simulation data is provided in Figures 7 and 8
below for a system of 1e6 bodies with theta=0.5. In order to
focus on the behavior of the framework itself, the data in
these figures deals only with execution times and speedups
for the force calculation kernel, referred to as the kernel
speedup, which the portion of Barnes-Hut implemented on
the accelerator. The results for the Barnes-Hut application as
a whole are discussed after the figures.

Figure 7 demonstrates that the kernel speedup provided
by the framework increases with p by an amount determined
by the similarity between traversals and grows nearly
linearly for the high-similarity (line distribution) case. The
traversal cache is able to achieve this speedup without
increased demands on physical memory bandwidth by
increasing effective memory bandwidth, requiring only a
single access for any single data structure element within a
batch of traversals. Since p is limited by the size of the
device, labels were added showing the amount of unrolling
achievable on some common FPGAs.

Figure 8 shows the effect of s, the number of p-sized
groups of traversals computed in sequence within a batch,

Figure 7. N-body kernel speedup obtained by the traversal cache framework
for different amounts of datapath replication p. Note that for high similarity,
speedup increases almost linearly due to the framework exploiting similarity

between traversals to eliminate the memory bandwidth bottleneck.

Figure 8. N-body kernel speedup obtained by the traversal cache

framework with p=5 for different amounts of sequential processing s.

for Barnes-Hut force calculation implemented with 5
datapaths (p=5). The simulation demonstrates that
additional kernel speedup can be obtained after maximum
unrolling by increasing s, up to a maximum. This maximum
speedup is also shown to be limited by the similarity
between traversals, with higher similarities allowing a
greater speedup for lower values of s. Since the optimum
amount of sequential processing s depends on the amount of
similarity, which, as is the case for Barnes-Hut, is likely not
constant or known a priori, these results suggest that
traversal caches might benefit from an adaptive
implementation that adjusts s according to an observed or
predicted amount of similarity.

The full application speedup is limited by the execution
time for the software parts of the application. For our
implementation, application speedup was limited to 13-40x,
due to the time required to construct the quad-tree. Since the
framework requires a serialized form of the data structure,
however, speedup for the application is ultimately limited
by the time required to generate and send this serialization.
For our implementation, this step alone would have limited
application speedup to 30-110x.

V. CONCLUSIONS
In this paper, we introduced a traversal cache framework

that enables efficient FPGA execution of some applications
with irregular memory access patterns. As opposed to
previous work that was limited to repeated traversals, the
framework in this paper extends traversal caches to handle
numerous similar traversals in parallel. For an n-body case
study, the framework was shown to achieve speedups
ranging from 12x to 13.5x compared to software. More
importantly, by exploiting similarity between traversals, the
framework can eliminate the common memory bandwidth
bottleneck, leading to linear increases in speedup with
additional area. Future work includes automating many of
the current designer specified portions of the framework.

REFERENCES
[1] B. Calder, C. Krintz, S. John, and T. Austin, “Cache-conscious

dataplacement,” in ASPLOS-VIII: Proceedings of the 8th international

conference on architectural support for programming languages and
operating systems. 1998, pp. 139–149.

[2] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Making pointer-based
data structures cache conscious,” Computer, vol. 33, no. 12, pp. 67–
74, 2000.

[3] S. Craven and P. Athanas, “Examining the viability of FPGA
supercomputing,” EURASIP J. Embedded Syst., vol. 2007, no. 1, pp.
13–20, 2007.

[4] A. DeHon, “The density advantage of configurable computing,”
Computer, vol. 33, no. 4, pp. 41–49, 2000.

[5] P. Diniz and J. Park, “Data search and reorganization using FPGAs:
application to spatial pointer-based data structures,” in FCCM ‘03:
Proceedings of the 11th annual IEEE symposium on field-
programmable custom computing machines, 2003, pp. 207–217.

[6] A. Y. Grama, V. Kumar, and A. Sameh, “Scalable parallel
formulations of the barnes-hut method for n-body simulations,” in
Supercomputing ’94: Proceedings of the 1994 ACM/IEEE conference
on supercomputing. 1994, pp. 439–448.

[7] P. Grun, N. Dutt, and A. Nicolau, “Access pattern based local
memory customization for low power embedded systems,” in DATE
’01: Proceedings of the conference on design, automation and test in
Europe. 2001, pp. 778–784.

[8] Z. Guo, B. Buyukkurt, and W. Najjar, “Input data reuse in compiling
window operations onto reconfigurable hardware,” in LCTES ’04:
Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on
languages, compilers, and tools for embedded systems. 2004, pp.
249–256.

[9] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative analysis
of the speedup factors of FPGAs over processors,” in FPGA ’04:
Proceedings of the 2004 ACM/SIGDA 12th international symposium
on field programmable gate arrays. 2004, pp. 162–170.

[10] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and
memory optimization techniques for embedded systems,” ACM
Trans. Des. Autom. Electron. Syst., vol. 6, no. 2, pp. 149–206, 2001.

[11] L. Semeria, K. Sato, and G. De Micheli, “Synthesis of hardware
models in c with pointers and complex data structures,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9,
no. 6, pp. 743–756, Dec 2001.

[12] G. Stitt, G. Chaudhari, and J. Coole, “Traversal caches: a first step
towards FPGA acceleration of pointer-based data structures,” in
CODES/ISSS ’08: Proceedings of the 6th IEEE/ACM/IFIP
international conference on hardware/doftware codesign and system
synthesis. 2008, pp. 61–66.

[13] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B.
Carter, W. C. Hsieh, and S. A. McKee, “The impulse memory
controller,” IEEE Transactions on Computers, vol. 50, no. 11, pp.
1117–1132, 2001.

V4LX100 V4LX200 V5LX330

	I. Introduction
	II. Previous Work
	III. Traversal Cache Framework
	A. System Architecture
	Software
	C. FPGA Framework
	D. Limitations

	IV. Case Study: N-Body Simulation
	A. Experimental Setup
	B. Performance Results
	C. Effect of Framework Parameters

	V. Conclusions
	References

