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Abstract—Numerous studies have shown that field-
programmable gate arrays (FPGAs) often achieve large 
speedups compared to microprocessors. However, one 
significant limitation of FPGAs that has prevented their use on 
important applications is the requirement for regular memory 
access patterns. Traversal caches were previously introduced 
to improve the performance of FPGA implementations of 
algorithms with irregular memory access patterns, especially 
those traversing pointer-based data structures. However, a 
significant limitation of previous traversal caches is that 
speedup was limited to traversals repeated frequently over 
time, thus preventing speedup for algorithms without 
repetition, even if the similarity between traversals was large. 
This paper presents a new framework that extends traversal 
caches to enable performance improvements in such cases and 
provides additional improvements through reduced memory 
accesses and parallel processing of multiple traversals. Most 
importantly, we show that, for algorithms with highly similar 
traversals, the traversal cache framework achieves 
approximately linear kernel speedup with additional area, thus 
eliminating the memory bandwidth bottleneck commonly 
associated with FPGAs. We evaluate the framework using a 
Barnes-Hut n-body simulation case study, showing application 
speedups ranging from 12x to 13.5x on a Virtex4 LX100 with 
projected speedups as high as 40x on today’s largest FPGAs. 
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I.  INTRODUCTION 
Much previous work has shown that field-programmable 

gate arrays (FPGAs) can achieve order of magnitude 
speedups compared to microprocessors for many important 
embedded and scientific computing applications [3][4][9]. 
However, one limitation of FPGAs that has prevented 
widespread usage is the requirement for regular memory 
access patterns (i.e., sequential streaming of data from 
memory) due to the heavily-pipelined circuits common in 
FPGA implementations. Applications with irregular memory 
access patterns, such as pointer-based data structure 
traversals, achieve much lower memory bandwidth due to 
increased row-address-strobe (RAS) operations and memory 
indirection caused by pointer accesses. Consequently, this 
lower memory bandwidth results in many pipeline stalls, 
which waste large amounts of parallelism, often resulting in 
limited or even no FPGA speedup.  

Previous work [12] partially addressed the inefficiency of 
irregular memory access patterns on FPGAs by using a 

traversal cache framework that identified repeated traversals 
of pointer-based data structures (which had irregular access 
patterns), reordered the repeated traversals into a sequential 
sequence of data, and then stored the reordered data into a 
traversal cache that efficiently streamed data to the FPGA. 
Although that framework improved FPGA performance, 
speedup was limited to repeated data structure traversals, 
which are not common in many important applications. 

In this paper, we present an improved traversal cache 
framework that eliminates many limitations of previous 
work, increasing the number of applications amenable to 
FPGA speedup. The improved framework is motivated by 
the observation that although many applications do not have 
repeated traversals, many applications do exhibit a large 
percentage of similarity between traversals. To exploit this 
similarity, the improved traversal cache framework stores 
multiple traversals, represented by an application-specialized 
data structure, in a traversal cache. Unlike previous work that 
only improved performance of repeated traversals, the 
improved framework improves performance of similar 
traversals by enabling multiple traversals to be performed in 
parallel based on the amount of similarity. Furthermore, if an 
application does repeat traversals, the improved framework 
maintains all of the advantages of the previous approach. 

Figure 1 provides an overview of traversal caches for an 
application that traverses a tree-based data structure. The 
previous approach, shown in Figure 1(a), does not achieve 
speedup due to a lack of repeated traversals (i.e., a 100% 
traversal cache miss rate). For any non-repeated traversal, the 
previous approach requires the microprocessor to compute 
the new traversal and update the traversal cache with the data 
included, often creating a bottleneck. On a cache miss, unlike 
previous approaches, the presented framework transfers a 
specialized representation of the data structure to the 
traversal cache, which enables the FPGA (as opposed to the 
microprocessor) to generate multiple traversals in parallel 
based on the amount of similarity. By transferring all the 
data necessary to compute any traversal, the improved 
approach effectively improves memory bandwidth by 
reusing data across multiple datapaths, thus enabling 
additional datapath replication (e.g., increased loop 
unrolling). In fact, the experimental results show that the 
memory bandwidth bottleneck is almost completely 
eliminated for highly-similar traversals, resulting in kernel 
speedup that increases approximately linearly with area. To 
deal with differences in traversals, the framework uses a 



 
Figure 2.  System architecture used by the traversal cache framework. 

 

 
Figure 1.  Traversal cache overview. (a) Previous approaches often lack 
speedup due to unrepeated traversals. (b) The improved traversal cache 

framework exploits similarity between traversals, enabling datapath 
replication by reducing memory accesses and delivering appropriate 

membership data to each datapath. 

 membership function to exclude inappropriate data from 
reaching each corresponding datapath. For the example in 
Figure 1(a), the previous approach would have required 16 
memory accesses and 16 traversal cache accesses, limiting 
the FPGA to process a single traversal at a time. The 
improved approach, shown in Figure 1(b), requires only 7 
memory accesses and 7 traversal cache accesses, which 
enables the FPGA to process 3 parallel traversals, resulting 
in a speedup of approximately 3x. 

 Note that the framework is not intended to automatically 
speedup an application; instead, a designer must provide the 
framework with necessary application-specific information. 
In this paper, we evaluate the framework using a Barnes-Hut 
n-body simulation [6] and discuss how the framework could 
be used for other applications. Barnes-Hut is a motivational 
example for the traversal cache framework because for n-
body simulations on FPGAs, Barnes-Hut is typically avoided 
due to irregular memory access patterns resulting from the 
use of a quad-tree. Instead, FPGA implementations often use 
a straightforward O(N2) implementation that does not require 
a tree data structure. Although this straightforward 
implementation enables highly parallel FPGA execution, 
software execution of O(NlogN) versions of Barnes-Hut 
eliminates FPGA speedup for large problem sizes. The 
traversal cache framework enables highly parallel FPGA 
execution of the O(NlogN) versions of the Barnes-Hut 
algorithm, with application speedup ranging from 12x to 
13.5x on a Virtex4 LX100 and projected speedups as high as 
40x on today’s largest FPGAs. For a simulation involving 
1e5 particles, previous approaches using the O(N2) algorithm 
would have to achieve a 500x speedup to match Barnes-Hut 
implemented in software, or a 6800x speedup to match the 
performance of our approach. 

The paper is formatted as follows. Section II discusses 
previous work. Section III describes the traversal cache 
framework. Section IV presents experimental results for an 
implementation of the Barnes-Hut n-body algorithm using 
the framework. 

II. PREVIOUS WORK 
In addition to the prior traversal cache work discussed in 

the introduction, there are several other areas of research 
related to traversal caches. Smart buffers [8] are specialized 
FPGA data caches, similar to traversal caches, which store 
reused data for sliding window operations. Smart buffers 
prevent reused data from being read multiple times from 
memory, which improves bandwidth and increases datapath 
replication. The traversal cache framework discussed in this 
paper is a superset of the functionality provided by smart 
buffers, also supporting pointer-based data structures and 
irregular memory access patterns. 

Smart memory engines [5] use FPGAs to dynamically 
reorganize main memory to improve locality of pointer-
based data structures. Traversal caches also reorganize data, 
but do so locally in the traversal cache as opposed to 
modifying main memory, which avoids alias limitations. 

Numerous high-level synthesis techniques have focused 
on alias analysis to enable optimization of pointer-based 
code [11]. Previous compiler and architecture studies have 
focused on improving locality of pointer-based data 
structures with data alignment and numerous other 
optimizations [1][2][7][10]. These techniques are 
complementary to traversal caches. 

The Impulse memory controller [13] improves memory 
performance of irregular patterns by mapping irregular 
virtual patterns into regular physical patterns. Traversal 
caches perform the same optimization, but do not require a 
specific memory controller or operating system support. 

III. TRAVERSAL CACHE FRAMEWORK 

A. System Architecture 
The system architecture consists of a microprocessor 

with access to an FPGA accelerator, as illustrated in Figure 
2. The FPGA implements pipelined datapaths that accelerate 
computation-intensive kernels of an application. The 
microprocessor and FPGA can be tightly coupled, resident 
on the same board or device, or loosely coupled, as over a 
system bus or network. Separate input and output memories 



 
Figure 4.  Traversal Generator. 

 

 
Figure 3.  FPGA portion of the traversal cache framework.  

 

are assumed for streaming data through the pipelines, 
accessible by both the FPGA and microprocessor. Although 
the framework can support any system meeting these 
requirements, we currently implement the framework using a 
Nallatech H101-PCIXM FPGA accelerator attached over 
PCI-X to a 3.2 GHz Intel Xeon.     

B. Software 
The microprocessor executes the software portion of the 

application until it encounters an FPGA-implemented region. 
As in previous work [12], software populates the traversal 
cache before the FPGA can be used. To allow the traversal 
cache to process multiple traversals simultaneously, the 
software portion of the framework uses designer-specified 
code to serialize the entire data structure, in the order it will 
be traversed in common for all traversals. This is, in a sense, 
a generalization of the previous approach which provided the 
data for a single traversal at a time, in the order of the 
traversal. Figure 1(b) gives an example of a serialization of 
three similar traversals from Figure 1(a). The serialization 
logic is currently manually specified because the serialized 
encoding must be specialized for different data structures and 
traversal orders. Automation is a topic for future work. 

Software also places in a section of the traversal cache 
any data outside the data structure necessary to compute each 
traversal, which we refer to as traversal inputs. For example, 
in an implementation of the Barnes-Hut n-body algorithm 
(discussed in Section IV), the forces on a number of particles 
are computed by traversing a tree, and those particles are the 
traversal inputs. The performance of the accelerator is 
maximized by the traversal cache when the traversal inputs 
are ordered to maximize the similarity between the traversals 
for adjacent inputs. The current framework also relies on the 
software to maintain the traversal cache’s consistency by 
updating the cache’s contents to reflect changes made to the 
data structure. In a tightly coupled system architecture, 
however, the framework could potentially be modified to 
support cache coherence through snarfing or snooping. 

Once the traversal cache is populated, software notifies 
the accelerator to begin processing data from the cache and is 
later notified by the accelerator when it is finished. 
Depending on the application, the processor might be able to 
do other work while waiting on the accelerator. For example, 
in Barnes-Hut, the output of the accelerator can be streamed 
to the microprocessor as it is computed, allowing preparation 
for the next time step’s calculations to occur in parallel. 

C. FPGA Framework 
The FPGA portion of the traversal cache framework is 

shown in Figure 3. The traversal generator computes the 
traversals for batches of traversal inputs at a time until all 
inputs have been used. For each batch, the number of 
memory accesses is minimized by exploring the data 
structure in a single pass, covering as little of the data 
structure as is necessary. The traversals for each input within 
the batch are computed in parallel and the elements included 
in each input’s traversal are streamed out from the generator 
as soon as their membership in each traversal is computed. 

The accelerator’s datapath can be replicated p times, with 
each replication handling a separate traversal stream 
produced by the traversal generator. In addition to a single 
common bus containing the current data structure element, 
e.g., the current Barnes-Hut tree node, data_valid and wait 
signals are provided for each datapath, informing the 
datapath when elements included in that traversal are 
available and allowing the datapaths to stall the generator, 
respectively. If necessary, any intermediate datapath 
products that might be computed in the generator kernels can 
also be brought out for the datapaths.  

The structure of the traversal generator is shown in 
Figure 4. Generator logic is to some extent specific to the 
data structure and algorithm, and therefore must currently be 
designer-specified. In all cases, however, the generator 
consists of a generator kernel specific to the application 
replicated for each of the p parallel traversals. Each generator 
kernel decides independently whether the current data 
structure element is included in the traversal for its input and 



guides further exploration of the data structure, for example 
by skipping nodes in a tree that it knows will not be 
included. Inclusion information is passed out of the generator 
as data_valid signals to the corresponding datapath. For 
example, in our Barnes-Hut implementation, the data_valid 
signal is generated by logic testing whether to accumulate 
the force due to the current tree node. In this case, since 
generating this signal also involves calculating data needed 
by the force calculation performed in the datapaths (the force 
direction among others), those signals are also brought out 
from the generator kernel for use by its datapath. 

For generator kernels that guide exploration of the data 
structure, the generator is also responsible for exploring as 
little of the data structure as possible, while still meeting the 
requirements of all its kernels. In the Barnes-Hut 
implementation, for example, if all but one kernel can skip a 
portion of the tree, the generator must still explore the 
section for the objecting kernel while blocking that data from 
reaching the other kernels. Because the kernel logic is itself 
pipelined, the generator must continue to fetch elements 
from the traversal cache, predicting that they will be used, to 
avoid stalling excessively. Thus, kernels can continue to 
receive elements that they have chosen to ignore for as long 
as the pipeline latency. Kernel outputs for these elements are 
invalid and must be ignored by the generator logic. For the 
same reason, the kernels themselves must either be stateless 
(i.e. no dependence on past data) or must be capable of 
reverting their state when it’s determined that previously 
received elements were invalid. 

In the simplest case, the number of traversals handled by 
the framework in parallel is limited to p, the number of 
replicated datapath-generator kernel pairs, which is limited 
by the resources available on the FPGA. The number of 
parallel traversals can be increased without increasing 
datapath replication by breaking them up into p-sized 
subsets: for each entity in the data structure, traversals within 
each set are computed in parallel and sets are processed 
sequentially by swapping out the traversal inputs used by the 
generator kernels. The amount of datapath replication p and 
the number of p-sized sets of traversals computed together s 
are the framework’s architectural parameters. The total 
number of traversals considered in a batch is given by p×s. 

D. Limitations 
The maximum speedup using our approach is achieved 

for algorithms with independent traversals in the same order, 
e.g. depth-first traversal, across a data structure. In the case 
that an algorithm’s traversals are dependent on previous 
traversals, the framework cannot process traversals in 
parallel (p=s=1). For algorithms whose traversals occur in 
different orders across a data structure, the framework is 
equivalent to the previous approach [12], requiring software 
intervention between processing traversals. 

The potential for speedup using this approach increases 
with the similarity between successive traversals. Because 
not all applications exhibit high similarity between 
traversals, the framework does not always improve 
performance. Low similarity between traversals results in 
disagreement among generator kernels about which regions 

of the data structure can be ignored. Since the generator must 
satisfy the needs of all the kernels to maintain correctness, it 
must include regions needed by any single kernel, stalling 
any other kernels (and datapaths) that don’t need those 
elements, reducing parallelism. Since element accesses are 
grouped for traversals computed in parallel, it can also be 
shown that the total number of accesses is minimized when 
similarity is maximized. However, because efforts to 
maximize the similarity between traversals would also 
benefit pure software implementations due to caches on main 
memory, implementations using the framework might 
benefit from existing work along those lines. 

In this paper we assume the data structure fits in the 
accelerator’s memory. In situations where the size of 
memory is a limitation, software could load only a part of the 
data structure into memory, updating the cache with the 
missing portions when they are reached during each 
traversal. Though this would limit the system performance, 
implementations not using a traversal cache would also be 
limited by the size of available memory, and possibly sooner 
since the ordering assumed by the framework allows the data 
structure’s serialized form to often be smaller than the 
original form in memory. More detailed analysis of the 
effects of cache size is left as future work. 

IV. CASE STUDY: N-BODY SIMULATION 
To evaluate the traversal cache framework, we performed 

a Barnes-Hut n-body simulation case study. The critical step 
in n-body simulation involves computing the resultant 
physical force (e.g. gravitational or electrostatic forces) on 
each of N bodies due to the other bodies. The Barnes-Hut 
algorithm [6] approximates the solution by recursively 
subdividing space into a quad-tree or oct-tree, with internal 
nodes representing an average of the leaf bodies (e.g. center 
of mass or electric multipoles). For concentrated collections 
of distant objects, set by a threshold ratio theta, the force is 
computed due to these average nodes instead of individual 
bodies. Depending on the value chosen for theta, Barnes-Hut 
has a complexity ranging from O(NlogN) to O(N2), with 
O(NlogN) for theta=0.5 being common in practice [6]. 

Our implementation of Barnes-Hut computes classical 
gravitational forces in two dimensions. The quad-tree 
traversal logic was implemented as a generator supporting 
generic depth-first search over an n-ary tree, with traversal 
kernels computing traversal membership and steering the 
search according to the algorithm and a programmable theta. 
Similarity between traversals is increased by loosely 
ordering the bodies by spatial locality in the universe, which 
is available inexpensively as the order of the leaves in the 
fully constructed quad-tree. Our software implementations 
also use this ordering, which we found provides a speedup of 
~30% due to cache issues, as mentioned in Section III.D. 
Our hardware implementation constructs the next time step’s 
quad-tree in parallel with the accelerator by streaming in 
accelerator outputs as they become available. 
A. Experimental Setup 

To evaluate the traversal cache, we implemented the 
framework in VHDL, including custom generator kernels 



 
Figure 5.  N-body application speedup achieved by the traversal cache 

framework on a Virtex 4 LX100 compared to a 3.2 GHz Xeon for various 
numbers of particles and representative distributions.  

 

 
Figure 6.  For lower values of theta (i.e., less approximation in Barnes-

Hut), the traversal cache framework achieves larger application speedup. 
Higher values of theta than shown are not common in practice. 

 and datapaths for Barnes-Hut, using generics for the number 
of traversals computed in parallel p and the number of p-
sized subsets computed sequentially s in each pass. The 
framework was configured to use a single SDRAM input 
memory. Cycle counts were extracted from an HDL test 
bench that used a memory model of the SDRAM available 
on the Nallatech H101-PCIXM, accessed through 
Nallatech’s SDRAM controller. Timing was measured and 
verified using a hardware implementation on the Nallatech 
H101-PCIXM FPGA accelerator card. 

The HDL simulation and timing data were combined to 
create a model of the framework’s behavior for arbitrary 
input data. From this model, we developed a C-based 
simulator capable of giving accurate timing for real input 
data. Because synthesizing each test case would have been 
very time consuming, this C-based simulator enabled rapid 
exploration of the framework’s design space, and also 
allowed considering configurations that wouldn’t fit on the 
H101’s Xilinx Virtex 4 LX100 FPGA. 
B. Performance Results 

Our traversal cache Barnes-Hut implementation was 
compared to software running on a 3.2GHz Xeon. The 
framework was tested with the maximum parallelism 
supported by the LX100 with no sequencing within a batch 
(s=1, p=25). Sequencing is discussed in the next section. 
Comparisons were made for two data sets representing 
extremes with respect to the similarity of traversals: bodies 
distributed randomly in space (minimum similarity of 83% 
for theta=0.5) and bodies uniformly distributed in a straight 
line (maximum similarity of 90% for theta=0.5). Multiple 
problem sizes N and values of theta were also tested. The 
results are presented in Figures 5 and 6. 

Figure 5 shows the application speedup of the framework 
relative to software for different problem sizes and theta=0.5. 
For the problem sizes tested, a speedup of between 11x and 
13.5x was achieved, depending on the data set. Execution 
times were lower for the high-similarity (line) data set for 
both hardware and software. The increasing speedup of the 
high-similarity data set is due to the task-level parallelism 
made possible by the framework; since the accelerator’s run 
time was smaller for this data set than the time required to 
construct the next quad-tree, incremental increases in the 
accelerator’s run time were hidden, resulting in a speedup 
increasing with N up to a plateau. The variability in the 

performance curves is primarily due to irregular growth in 
the size of the quad-tree. 

The effect of the algorithm’s precision parameter theta is 
shown in Figure 6 for a simulation with 1e5 bodies. The 
framework achieves higher application speedup for smaller 
values of theta, where the algorithm’s complexity 
approaches O(N2). Traversals include more elements for 
these instances of the problem, resulting in a greater 
reduction in total memory accesses due to the traversal cache 
and, consequently, a greater speedup over software. When 
compared against experimental results in [12] the data also 
suggest a large speedup over previous traversal caches for 
the O(N2) case. Note that comparing speedups of different 
theta values is different than comparing execution times. As 
theta increases, the complexity and execution time of the 
algorithm decreases, which contributes to the decreasing 
speedup. Furthermore, previous n-body implementations are 
typically unable to achieve speedup for theta > 0. 
C. Effect of Framework Parameters 

The traversal cache framework can be configured for an 
application through the parameters p and s, as discussed in 
Section III.C. In this section we explore the effect of these 
parameters for our traversal cache implementation of 
Barnes-Hut. Simulation data is provided in Figures 7 and 8 
below for a system of 1e6 bodies with theta=0.5. In order to 
focus on the behavior of the framework itself, the data in 
these figures deals only with execution times and speedups 
for the force calculation kernel, referred to as the kernel 
speedup, which the portion of Barnes-Hut implemented on 
the accelerator. The results for the Barnes-Hut application as 
a whole are discussed after the figures. 

Figure 7 demonstrates that the kernel speedup provided 
by the framework increases with p by an amount determined 
by the similarity between traversals and grows nearly 
linearly for the high-similarity (line distribution) case. The 
traversal cache is able to achieve this speedup without 
increased demands on physical memory bandwidth by 
increasing effective memory bandwidth, requiring only a 
single access for any single data structure element within a 
batch of traversals. Since p is limited by the size of the 
device, labels were added showing the amount of unrolling 
achievable on some common FPGAs. 

Figure 8 shows the effect of s, the number of p-sized 
groups of traversals computed in sequence within a batch, 



 
Figure 7.  N-body kernel speedup obtained by the traversal cache framework 
for different amounts of datapath replication p. Note that for high similarity, 
speedup increases almost linearly due to the framework exploiting similarity 

between traversals to eliminate the memory bandwidth bottleneck. 

 

 
Figure 8.  N-body kernel speedup obtained by the traversal cache 

framework with p=5 for different amounts of sequential processing s. 

 
for Barnes-Hut force calculation implemented with 5 
datapaths (p=5). The simulation demonstrates that 
additional kernel speedup can be obtained after maximum 
unrolling by increasing s, up to a maximum. This maximum 
speedup is also shown to be limited by the similarity 
between traversals, with higher similarities allowing a 
greater speedup for lower values of s. Since the optimum 
amount of sequential processing s depends on the amount of 
similarity, which, as is the case for Barnes-Hut, is likely not 
constant or known a priori, these results suggest that 
traversal caches might benefit from an adaptive 
implementation that adjusts s according to an observed or 
predicted amount of similarity. 

The full application speedup is limited by the execution 
time for the software parts of the application. For our 
implementation, application speedup was limited to 13-40x, 
due to the time required to construct the quad-tree. Since the 
framework requires a serialized form of the data structure, 
however, speedup for the application is ultimately limited 
by the time required to generate and send this serialization. 
For our implementation, this step alone would have limited 
application speedup to 30-110x. 

V. CONCLUSIONS 
In this paper, we introduced a traversal cache framework 

that enables efficient FPGA execution of some applications 
with irregular memory access patterns. As opposed to 
previous work that was limited to repeated traversals, the 
framework in this paper extends traversal caches to handle 
numerous similar traversals in parallel. For an n-body case 
study, the framework was shown to achieve speedups 
ranging from 12x to 13.5x compared to software. More 
importantly, by exploiting similarity between traversals, the 
framework can eliminate the common memory bandwidth 
bottleneck, leading to linear increases in speedup with 
additional area. Future work includes automating many of 
the current designer specified portions of the framework. 
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