
ABSTRACT

Networks-on-Chips (NoCs) are an emerging
communication topology paradigm in single chip VLSI
design, enhancing parallelism and system scalability.
Processing units (PUs) connect to the communication
topology via routers, which are responsible for runtime
establishment and management of inter-PU
communication channels. Router design directly affects
overall system performance and exploited parallelism. In
this paper, we present a highly parametric NoC
architecture, MACS, providing increased system speed,
designer flexibility, and scalability as compared to
previous methods. In addition, MACS enhances inter-PU
communication using a circuit-switching technique with
dedicated, high frequency communication channels.
Compared to previous work, MACS offers a 5x increase in
operating frequency and a 2x reduction in area overhead.

1. INTRODUCTION AND MOTIVATION

In order for applications to harness new capabilities made
possible by the transistor explosion provided by Moore’s
law, applications are typically decomposed into multiple
parallel processing units (PUs). For applications to exploit
this increased parallelism, Networks-on-Chips (NoCs)
[3][4] provide a scalable, modular communication
architecture to efficiently and effectively communicate
shared data and control signals across inter-PU
communication channels. In NoCs, routers or switches
(for packet switching or circuit switching, respectively),
connect PUs to a routing fabric (PUs may connect to more
than one router) and the routing fabric connects routers in
a single- or multi-dimensional topology.

Currently, NoC performance is primarily restricted by
three limitations: connecting a single PU to each router,
inefficient routing algorithms, and inefficient packet
switching methodologies. Connecting a single PU to each
router can result in increased area overhead (allowing
PU’s to share routers reduces the number of required
routers), reduced operating frequency, and increased wire
length. Inefficient routing algorithms (such as
deterministic routing) can cause communication
bottlenecks (all lanes dedicated to communication
channels) and unbalanced communication load (some

routers may have many communication channels while
others have few or none). Finally, inefficient switching
methodologies for packetized data transfers can increase
router area and reduce the communication operating
frequency due to complex decoding logic and extra logic,
such as counters, to monitor the number of packets.

In this paper, we address these NoC limitations with
MACS, a Minimal Adaptive routing Circuit-Switching
based switch for a two-dimensional mesh topology.
MACS connects two PUs to each switch, providing quick
channel establishment (only one switch involved) and fast
data transfers (data moves directly from one PU to the
other without traversing the routing fabric) for critical PU
pairs. This enhancement increases system design
flexibility, enabling designers to strategically place critical
PU pairs on the same router. MACS efficiently distributes
communication load using a minimal adaptive shortest
path routing algorithm with distributed arbitration. In
addition, MACS uses a simple and efficient circuit-
switched routing decision state machine, resulting in high
communication operating frequency. Finally, to increase
design flexibility and system customization, we
implement MACS as a highly parametric VHDL model
with numerous tunable architectural parameters such as
number of communication lanes per port and data bit
width. MACS offers a 5x increase in communication
operating frequency and a 2x reduction in area compared
to a previous packet-switched architecture [2] and a 2x
increase in communication operating frequency with only
a slight increase in area compared to a previous circuit-
switched architecture [6].

2. RELATED WORK

Efficient router architecture design motivated much early
NoC research and in order to compare these router
architectures, [5][7][8][9] provided comparisons based on
different switching techniques and topologies. Wiklund et
al. [9] evaluated different topologies and proved that the
mesh topology was the most appropriate for on-chip
networks.

Liu et al. [7] and Wiklund et al. [8] both provided
strong arguments for the advantages of circuit-switched
NoCs over packet-switched NoCs. Liu et al. [7] proposed
a Time Division Multiplexed (TDM) scheme for

MACS: A MINIMAL ADAPTIVE ROUTING CIRCUIT-SWITCHED ARCHITECTURE
FOR SCALABLE AND PARAMETRIC NOCS

Rohit Kumar and Ann Gordon-Ross
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL
{kumar, ann}@chrec.org

communication channels on a two-dimensional mesh
NoC. One potential drawback of TDM was out-of-order
data arrival; but the authors provided a mechanism to
ensure in-order data arrival. Moreover, due to the use of
centralized routing, TDM could suffer from
communication bottlenecks.

To alleviate these bottlenecks, Wiklund et al. [8]
proposed a mesh topology NoC (SoCBUS) using
distributed arbitration. SoCBUS explored only one
shortest path (even though many existed) and did not
consider communication load balancing. In addition, the
authors suggested that SoCBUS was not suitable for
networks with random traffic.

In order to provide better communication bandwidth for
random traffic, Ahmadinia et al. [1] proposed RMBoC (a
circuit-switched NoC). RMBoC had several drawbacks
including deterministic routing that did not consider
communication load balancing, large area requirements
due to a separate network controller for each dimension,
and low communication operating frequencies due to a
complex routing algorithm.

Hilton et al. [6] presented the Programmable Network-
on-Chip (PNoC), a highly flexible circuit switched NoC
for FPGA systems. PNoC’s tunable parameters included
the number of router ports, data, address bus widths, and
number of PUs attached to a router. All PUs connected to
the same router formed a subnet and these PUs shared a
common address. Therefore, during a connection
establishment request to a particular subnet, only one PU
could communicate at a time. Whereas this technique
appeared to be inflexible, the technique was highly
suitable for processor-farm systems. Furthermore, PNoC
could not consider communication load balancing unless
the operating system could update the routing table during
run-time.

In order to address limitations of previous architectures,
we introduce MACS, a two-dimensional mesh topology
circuit-switched architecture with distributed arbitration.
We implement MACS as a highly parametric VHDL
model with numerous tunable architectural parameters.

Compared to previous work, MACS is a low area
architecture that reduces communication establishment
bottlenecks using a minimal adaptive routing algorithm to
ensure alternate path exploration in orthogonal directions,
increases architectural specialization, and provides high
communication operating frequencies.

3. MACS ARCHITECTURE

Fig 1 (left side) depicts MACS’s switch architectural
layout. X and Y coordinates identify individual switch
addresses based on horizontal and vertical positions,
respectively, in the two-dimensional topology. Each
switch’s two PUs are addressed relative to their connected
switch. A MACS switch has four total switch ports with
one port connected to each neighboring switch (left, right,
up, and down) and two local ports connected to the two
PUs. A port identification number (PID) uniquely
identifies each port. Each port contains multiple input and
output communication lanes to support multiple
simultaneous communication channels between different
PU pairs (denoted by the ‘K’ tunable architectural
parameters in Fig 1). A lane identification number (LID)
uniquely identifies each port’s input and output lane. Each
switch/local port can be specialized with different
numbers of input or output lanes providing fine-grained
per-direction communication bandwidth specialization.
Furthermore, each input lane consists of several control
signals (req_in, gnt_out, dny_out, and ful_out) and W data
signals (data_in). Similarly, each output lane consists of
several control signals (req_out, gnt_in, dny_in, and
ful_in) and W data signals (data_out). Control signals
negotiate channel establishment and data signals provide
inter-PU communication bandwidth.

3.1 SWITCH OPERATION

Switch operations include communication channel
establishment for inter-PU data transfers (transactions),
waiting for transaction completion, and subsequently
releasing communication channel resources (e.g. logic
elements, registers, etc). Channel establishment
effectively connects an input lane of one port to an output
lane of another port and is the process of allocating
channel resources for routing incoming requests and data
on this dedicated input-output lane connection. After
channel resource allocation, the switch waits until
transaction completion before releasing these resources.

Each port contains two types of routing control logic
blocks (signal forwarders) for channel establishment: an
External Signal Forwarder (ExSIF) and an Internal Signal
Forwarder (InSIF). Signal forwarders are responsible for
controlling all communication operations such as
communication request servicing and channel
establishment negotiations and record necessary channel
routing information in status tables. Table 1 depicts the

Fig 1. MACS’s switch architectural layout (left) and port

details (right) (all ports are similar with individually
parameterized number, denoted by ‘K’s, of similar lanes).

Lane details show all signals and routing control logic blocks
(ExSIF/InSIF) associated with each input/output lane.

ExSIF/InSIF coordinate using status tables (RST and CNT).

status table details for the request service table (RST)
maintained by the ExSIF and the connectivity table (CNT)
maintained by the InSIF. Channel routing information
specifies lane availability and input-output port lane
connections. The ExSIFs, InSIFs and the status tables play
a key role in channel routing, as discussed in Section 4.

4. CHANNEL ROUTING ALGORITHM

Establishing an arbitrary inter-PU communication channel
on a two-dimensional mesh is a straightforward process,
but however, choosing the best communication channel
given all potential routes is challenging. For example,
minimal adaptive routing chooses the shortest path
between two points in a two-dimensional mesh, thus
defining the best route as simply the shortest path.
However, between two points in a two-dimensional mesh,
there exists (ΔX + ΔY)! / ((ΔX)! + (ΔY)!) equal length
shortest path routes where ΔX and ΔY are the differences
between the X and Y coordinates of the two points,
respectively. We define the best routing path as both a
shortest path (with available communication lanes) and
one that best distributes communication channels to avoid
communication bottlenecks and communication resource
starvation.

Our communication channel routing algorithm is based
on minimal adaptive routing to establish, maintain, use
(transfer data), and release inter-PU communication
channels, which correspond to channel phases: the request
service phase, the grant/deny phase, the data transfer
phase, and the resource release phase. Each switch can
maintain multiple channels, each of which may be in any
one of these phases (regardless of the other channel’s
phases). Fig 2 depicts a state graph of channel phase
actions and transitions.

 The switch begins operation in the idle state (S1). If the
switch receives a channel establishment request and
associated channel establishment information on the
req_in and data_in signals, the switch transitions to S2

and begins the request service phase. In S2, the switch
compares its address with the destination switch address
and determines (according to the minimal adaptive
algorithm) the potential destination ports (‘C0’ and/or
‘C1’) in which to forward the incoming request. If the
current and destination switch addresses do not match, the
requested PU is not connected to the current switch and
the current switch must forward the request to (a)
neighboring switch(es). Otherwise, the request is
forwarded to the appropriate local PU port. If there is an
available output lane on ‘C0’ and/or ‘C1’, the switch
transitions to S3 to establish input-output lane
connections. In S3, the requesting port’s ExSIF adds the
appropriate entries to the RST (Table 1 (top)) and the
destination port’s InSIF adds the appropriate entries to the
CNT (Table 1 (bottom)). After adding these entries, the
switch transitions to S4 and forwards the request to the
available lane on port(s) ‘C0’ and/or ‘C1’ and completes
the request service phase. On the other hand, if there are
no available output port lanes, routing at this switch fails
and the switch transitions to S10, sends a deny response to
the requesting switch, and transitions back to the idle state
(S1) (the status tables are unchanged).

After successful completion of the request service
phase, the switch enters the grant/deny phase (S5) and
waits for grant and/or deny signal responses (gnt_in or
dny_in, respectively) on the output lane of port(s) ‘C0’
and/or ‘C1’. If only one port (direction ‘C0’) was selected
in the request service phase and a grant is received, the
switch transitions to S7 and forwards the gnt_in, dny_in,
and ful_in signals to the corresponding gnt_out, dny_out,
and ful_out signals of the requesting port’s input lane (the
port’s input lane in which the request generated from and
has already been stored in the CNT in S3). If both ports
‘C0’ and ‘C1’ were selected in the request service phase,
there are three possible state transition situations. In the
first situation, the switch receives denies from both ports
and transitions to S6 to release all channel resources
associated with both ports. The switch transitions to S10,
sends deny to the requesting port and transitions back to
the idle state (S1). In the second situation, the switch
receives one grant and one deny (associated with ‘C0’ and

Fig 2. State diagram for a switch’s channel phase actions

and transitions.

Table 1. Status table details for each input lane (ExSIF maintains
the RST) and output lane (InSIF maintains the CNT).

‘C1’, respectively, or vice versa). The switch transitions to
S7, forwards gnt_in, dny_in, and ful_in from ‘C0’ to the
requesting port, and releases resources associated with
‘C1’. (Note that the case is similar when ‘C0’ denies and
‘C1’ accepts). In the third scenario, the switch receives
grants from both ports and transitions to S8 for grant
resolution. Grant resolution selects the best channel to
establish by evaluating the port responses and associated
route costs to determine which response to forward to the
requesting port’s input lane. Route cost is defined as the
number of lanes already assigned to existing
communication channels. If both ports route costs are
different, the switch selects the lowest route cost port as
the best port. If both ports route costs are equal, the switch
selects the port with the lowest PID as the best port. After
the best port is selected (denoted as ‘C0’ in S8 and S7),
the switch transitions to S7, forwards gnt_in, dny_in, and
ful_in of port ‘C0’ to the requesting port’s input lane using
information in C0’s output lane’s CNT, and releases the
resources associated with port ‘C1’ using information in
the requesting port’s input lane’s RST. This algorithm is
deadlock free because in all situations, the switch
forwards/sends either a grant or deny to the requesting
input port, which prohibits infinite channel locking. The
total number of cycles required for releasing all of the
resources is linear with ΔX + ΔY.

The request service phase propagates successively
down all shortest paths from the source switch to the
destination switch simultaneously. The grant/deny phase
propagates successively backward on all of these paths.
Even though multiple request service phase paths may
reach the destination switch, only one path will propagate
the grant signal all the way back to the source switch,
allocating channel resources on this backward
propagation.

At each switch, if sufficient channel resources exist and
that switch is allocated to the routing path (lies on the best
routing path), grant/deny phase completion (S7) and
channel establishment occur simultaneously and pipelined

data transfers (S9) can begin along the channel. Since
MACS uses a circuit-switching methodology, in-order
data arrival is guaranteed. The channel remains
established until the switch enters the resource release
phase, either due to data transfer completion or the denial
of a channel establishment request, to free all associated
channel resources. The switch transitions to S11 and
releases channel resources by removing corresponding
status table entries.

5. RESULTS

We implemented the MACS switch as a highly parametric
VHDL soft core providing architectural parameters to
specify the number of switch port lanes (Kl (left), Kr
(right), Kd (down), Ku (up)), local port lanes (Kll (left
local), Krl (right local)), and lane data width W. Given the
prohibitively large design exploration space for all
possible combinations of all architectural parameters, we
fix the number of switch port lanes with respect to each
other (Kl = Kr = Kd = Ku) and number of local port lanes
with respect to each other (Kll = Krl). Our design targeted
the Xilinx Virtex-II Pro XC2VP30-7FF1152 device.

For each combination of Kl, Kr, Kd, Ku and Kll, Krl,
we evaluated area usage and maximum operating
frequency. We measured maximum operating frequency
after place and route using the Xilinx static timing
analysis tool, trace, with no clock constraint (trce -v-u-a).
We used the Xilinx ISE simulator to simulate the design.

5.1 AREA USAGE AND TIMING ANALYSIS

Fig 3 (top row) depicts switch area usage per PU (total
switch area is twice these values since each switch has
two PUs). The x-axis in each graph varies the Kl, Kr, Kd,
and Ku architectural parameters from 1 to 3 lanes per
switch port. From left to right, the graphs vary the Kll and
Krl parameters from 1 to 3 lanes per local port. In
addition, each graph also depicts the area usage for data
widths W = 8, 16, and 32 bits. For example, the area usage
for Kl = Kr = Kd = Ku = Kll = Krl = 1 and W = 16 bits is
576 slices per PU, which equates to only 4.2% of
available slices on our test device

Fig 3 (bottom row) depicts maximum operating
frequency (for the same parameter values as discussed in
the previous paragraph) and shows that MACS can
achieve high operating frequencies ranging from 170
MHz to 308 MHz.

We evaluate MACS compared to two previous works, a
packet-switched architecture [2] and a circuit-switched
architecture (the PNoC) [6], in terms of area overhead (in
FPGA slice and block-RAM (BRAM) requirements) and
attainable operating frequency. We point out that direct
comparison with previous work is difficult due to a large
variation in tools, devices, and architectural layout. To
provide as fair a comparison as possible, we choose

Fig 3. Area usage in number of slices per PU (top row) and

maximum operating frequency (bottom row) for data widths
W = 8, 16, and 32 bits for a varying number of lanes per

switch and local port. The x-axis in each graph varies the Kl,
Kr, Kd, and Ku parameters from 1 to 3 lanes per switch port.

From left to right, the graphs vary the Kll and Krl
parameters from 1 to 3 lanes per local port.

similar architectural layouts i.e. topology (two-
dimensional mesh), number of PUs (8), number of lanes
per port (1), data width (16 bits), and the same device
platform (Xilinx Virtex-II Pro). For MACS, since edge
switch ports (those on the periphery of the mesh) do not
connect to any neighboring switches, we tied these switch
ports to ground, and thus allowed the synthesis tool to
optimize edge switch ports and reduce area requirements.

Table 2 compares MACS with the previous NoC
architectures. We obtained the area and frequency values
directly from literature for the packet-switched
architecture [2] and PNoC circuit-switched architecture
[6]. Compared to a packet-switching architecture, MACS
provides a 2x reduction in area requirements and a 5x
improvement in operating frequency. When compared to
PNoC, MACS imposes a slight area increase but provides
a 2x improvement in operating frequency.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce MACS, a highly parametric
two-dimensional switch mesh topology NoC. MACS uses
a minimal adaptive routing algorithm with multiple path
evaluation for dynamic communication channel
establishment and communication load balancing. To the
best of our knowledge, the MACS switch is the first NoC
switch to use minimal adaptive routing to explore all
shortest paths and route cost evaluation for
communication load balancing. In addition, to reduce area
overhead and increase application specialization, MACS
connects two processing units (PU) to each switch.
Whereas the system designer must strategically place
critical PU pairs on common switches in order to exploit
this increased performance benefit, critical PU placement
is not required (this placement only enhances MACS
specialization abilities). Results show that MACS is
highly scalable and achieves high operating frequencies
even for systems with large data buses. Results show that
MACS offers a 5x increase in communication operating
frequency and a 2x reduction in area compared to a
previous packet-switched architecture and a 2x increase in
communication operating frequency with only a slight
increase in area compared to a previous circuit-switched
architecture.

Future work includes switch power analysis and
reducing communication channel establishment latency by
improving the routing algorithm’s round-robin arbitration.
In addition, we plan to explore bi-directional request and
data buses to optimize communication, as well as protocol
development. Detailed simulation is planned for

visualization and analysis of communication load
balancing. Finally, we will provide a design exploration
script with MACS to assist designers in per application
architectural specialization.

7. ACKNOWLEDGEMENTS

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant No. EEC-
0642422. We gratefully acknowledge tools provided by
Xilinx.

8. REFERENCES

[1] Ahmadinia A, Bobda C., Ding J., Majer M. and Teich T. “A
Practical approach for Circuit Routing on Dynamic
reconfigurable Devices”. International Workshop on Rapid
System Prototyping, 2005, pages 84-90.

[2] Bartic, A., Mignolet, J.Y., Nollet, V., Marescaux, T.,
Verkest, D., Vernalde, S., and Lauwereins, R. “Highly
scalable network on chip for reconfigurable systems”.In
Proceedings of International Symposium on System-on-Chip,
2003, pages 79–82.

[3] Benini L. and Micheli G. De, “Networks on Chips: a New a
SOC Paradigm”, IEEE Computer, 2002, pages70-78.

[4] Dally W. J. and Towles B. “Route Packets, Not Wires: On-
Chip Interconnection Networks”. In Proceedings of the 38th
Design Automation Conference, 2001, pages 684-689

[5] Duato J., Yalamanchili S., and Ni L. M. “Interconnection
networks: an engineering approach”, 1997. ISBN 0-8186-
7800-3.

[6] Hilton C. and Nelson B., “PNoC: a flexible circuit-switched
NoC for FPGA-based systems”. In Proceedings of Computers
and Digital Techniques, 2006, pages 181-188.

[7] Liu, J., Zheng, L. R., and Tenhunen, H.: “A circuit-
switched network architecture for network-on-chip”. In
Proceedings of International Symposium on System-on-Chip,
2004, pages 55–58.

[8] Wiklund D. and Liu D., “SoCBUS: Switched Network on
Chip for Hard Real Time Embedded Systems”. In Proceedings
of International Parallel and Distributed Processing
Symposium, 2003, pages. 78-85.

[9] Wiklund D. and Liu D. “Design of a system-on-chip
switched network and its design support”. In Proceedings of
the International conference on communications, circuits and
systems (ICCCAS),2002, pages 1279-1283

Table 2. Comparison of 8 PU two-dimensional mesh topology
NoCs

