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Abstract - Parallel architectures have become an increasingly 
popular method in which to achieve high performance with low 
power consumption. In order to leverage these benefits, 
applications are decomposed into multiple computational 
modules (tasks) that collectively operate and communicate in 
parallel. In this paper, we present a scalable and highly 
parametric streams-based communication architecture for 
inter-module communication for FPGA-based systems – 
SCORES. This communication architecture improves on 
previous methods by providing increased application 
specialization and heterogeneous module clock frequencies, as 
well as providing a means for low latency communication and 
data throughput guarantees. 

I. INTRODUCTION AND MOTIVATION 
One of the most important design considerations in VLSI 

digital systems is achieving high performance with low power 
consumption. Parallel architectures provide a popular method 
in which to achieve these goals [6]. Parallel architectures 
enable application decomposition into multiple computing 
modules, operating and communicating in parallel and which 
collectively encompass entire application behavior.  

In order to exploit potential speedup as the number of 
modules increases, an efficient communication architecture to 
support inter-module communication is required. Traditional 
bus-based communication architectures enable all computing 
modules to communicate over a common shared bus, providing 
great flexibility for varying levels of inter-module 
communication requirements. However, bus-based 
communication architectures scale poorly as the number of 
computing modules increases [5]. This poor scalability results 
from shared transmission media contention and long routing 
wire delays, of which collectively imply long routing delays, 
reduced maximum clock frequency, and reduced throughput. 

In order to alleviate some of the bus-based communication 
architecture drawbacks, a Network-on-Chip (NoC) architecture 
was proposed as a paradigm for scalable and parallel 
communication architectures [3]. NoCs are constructed as a 
topology of networked nodes connected by physical 
communication links. Each computing module is attached to 
this topology via a networked node. Depending on the 
communication scheme used, networked nodes can be 
classified as routers (packet switching) or switches (circuit 
switching).  

NoCs appear to be a good alternative to bus-based 
communication. Network nodes provide breaks in the long 
routing wires inherent in a bus-based architecture, and therefore 
typically achieve higher operating frequencies. Furthermore, 
the main advantage of a NoC is scalability and specialization 
[11]. NoCs are commonly implemented as parametric HDL 
soft cores. Architectural parameters such as topology 
dimensions (width and height in number of routers), width and 
number of ports per node, and buffer depth enable architectural 
tuning to a specific target application [11]. 

NoC design was initially targeted for ASICs, although 
relatively recent research has extended these architectures to 
FPGAs [4][7][10][11][12][13]. However, FPGA-based designs 
commonly show four main limitations: high communication 
latency, no throughput guarantee, limited number of 
architectural parameters, and a significant area overhead. 
Furthermore, there is no standardized connection interface for 
computing modules, which forces computing module 
specialization to a specific NoC, reducing design reusability. 

High communication latency and lack of throughput 
guarantee is a problem for some application domains. For 
example, DSP and image processing applications typically 
stream data between computing modules. Low latency and 
guaranteed throughput are required due to these system’s 
real-time constraints. However, it is difficult for NoCs to meet 
these constraints, because NoCs were primarily designed for 
best effort delivery and not for quality of service guarantees. 

In this paper, we present a novel Scalable COmmunication 
architecture for REconfigurable Systems (SCORES). SCORES 
utilizes a streams-based approach to transmit data between 
computing modules through dynamically established 
non-shared streaming channels. These channels enable low 
latency and guaranteed throughput. SCORES also features 
numerous tunable architectural parameters, offering increased 
application specialization compared to previous work. In 
addition, we present a simple, scalable, and highly parametric 
switch, which forms the basis for the SCORES communication 
architecture. Computation modules connect to switches using 
FIFO-based module interfaces, which enable heterogeneous 
module clock frequencies. 

 



II. RELATED WORK 
Marescaux et al. [7] presented the first working 

implementation of an FPGA-based NoC communication 
architecture built from store and forward (SF) routers. NoC 
topology was a 2D mesh and used deterministic XY routing 
[7]. Each router had five input ports and five output ports with 
16 data bits per port. The SF technique introduced high 
transmission latencies due to packetization and queuing delays. 
Queuing delays were incurred due to the centralized arbiter 
inside each router to establish all input and output port 
connections. Additionally, the routers used one FIFO at each 
router input port for packet buffering. Because links between 
routers were time-shared between multiple simultaneous 
connections and these connections were dynamically 
established at runtime, throughput could not be guaranteed. A 
standalone router required 446 slices (4.8% of device usage) on 
the Xilinx Virtex XCV800.  

Zerferino et al. presented SoCIN [12], a 2D mesh NoC built 
using wormhole routers. As opposed to SF routers that sent 
data messages as one large packet, wormhole routers split data 
messages into one header flit containing routing information 
and one or more smaller data flits for message transmission. If 
an output port was available, the header flit was routed and the 
remaining data flits followed in a pipelined method. When a 
message traversed the network, the message flits were located 
in multiple routers. Flits reduced FIFO memory requirements 
and transmission latency compared to packets. Modifiable 
architectural parameters included channel width and buffer 
depth. To reduce queuing delays, SoCIN replaced a centralized 
arbitration scheme with a distributed scheme by incorporating 
one arbiter per each router output port. However, SoCIN had 
high resource utilization for a standalone router. Each router 
accounted for as much as 11% of a Xilinx V2PRO V2P30 [10].  

Sethuraman et al. designed a 2D NoC using an SF router 
called LiPaR [10]. Modifiable architectural parameters 
included channel width and buffer depth. The NoC used the 
FIFOs’ empty flags in order to govern transmission 
synchronization inside and between the routers, which 
significantly reduced control logic complexity. However, the 
router had a complex cross point switch matrix. The router ran 
at 33.33 MHz and required 352 slices (2.7% of device usage) 
on a Xilinx Virtex 2 Pro V2P30 for a minimum sized channel 
width of 8 bits (excluding FIFO buffer resources). 

Sedcole et al. presented a bus-based communication 
architecture called Sonic-on-a-Chip [9] for reconfigurable 
image processing systems, which leveraged NoC concepts. 
Dedicated communication streaming channels between 
computing modules were dynamically established by allocating 
frame slots inside the time-multiplexed bus. System 
performance was comparatively slow to NoC-based designs 
(50 MHz for V2Pro) due to the long routing wires inherent in a 
bus-based architecture. 

Ahmadinia et al. proposed the RMBoC (reconfigurable 
multiple bus on-chip) architecture [1]. Communication links 
connected switches in a linear array. Architectural parameters 
included number and width of communication links. Switches 
had only one input and one output port for module connections. 
Switches used a centralized FIFO and arbiter to receive all 
connection requests. Switches dynamically established 
dedicated communication paths between modules, although, 
the architecture did not leverage flow control, which is 
problematic when a module exhausts buffer memory. Finally, 
the modules and communication architecture were required to 
operate at the same clock frequency. RMBoC achieved an 
operating frequency of 99 MHz and required 3407 slices (10% 
of device usage) on a Virtex II 6000 for a design with four 
switches and four communication links between switches.  

III. SCORES ARCHITECTURE  
Fig. 1 depicts the top-level design of the SCORES 

communication architecture. SCORES is composed of a linear 
array of switches (one switch is highlighted in gray shading). 
Each switch has a unique X coordinate indicating its horizontal 
position inside the linear array. Switches communicate with 
neighboring switches (Kl and Kr) and computing module 
interfaces (Ki and Ko) through bidirectional communication 
links between their input and output ports.  

Computing modules attach to switches through two types of 
module interfaces. Consumer Interfaces connect a computing 
module’s input port to a switch’s local output port (Ko). 
Producer Interfaces connect a computing module’s output port 
to a switch’s local input port (Ki).  

Dynamically established Dedicated Streaming Routes 
(DSRs) enable data transmission between two computing 
modules. These dedicated routes provide high throughput and 
low latency data transmission. For each DSR, we refer to the 
producer as the module sending data and the consumer as the 
module receiving data. A computing module can be both a 
producer and consumer simultaneously. 

A. Architectural Parameters 
SCORES is a highly parametric communication architecture. 

Our design offers six tunable architectural parameters: N, W, 
Kr, Kl, Ki, and Ko (Fig. 1). N represents the number of 
switches in the linear array. W is the width of the 
communication links and switch input and output ports. Ki, Ko, 
Kr, and Kl represent the number of local input ports, local 
output ports, right output and left input ports, and left output 
and right input ports, respectively, for each switch. Thus, a 
switch has Kl and Kr communication links to the left and right 
neighboring switches, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Top SCORES communication architecture 
 



B. Communication Links 
Communication links, illustrated in Fig. 2, connect a switch 

with neighboring switches and computing modules. The link 
consists of two opposite flowing data channels and three 
handshaking signals. 

The Streaming Data Channel (SDC) is the main channel 
and transmits data from a switch or computing module output 
port to the connected input port. The two most significant bits 
(MSBs) of the SDC are reserved for signaling. The MSB is the 
Write Enable (WR_EN) and indicates that the producer is 
transmitting a word. The second MSB is the End of Stream 
(EOS) and indicates that the producer has completed data 
transmission and that the DSR can be released. The remaining 
W-2 least significant bits (LSBs) of the SDC carry data. The 
Stream Feedback Channel (SFC) is a single signal, Remote 
FIFO Full, which indicates that the consumer FIFO is full, and 
therefore the producer must pause data transmission. The 
handshaking signals (REQ and ACK) establish and release a 
DSR. The DENY signal will be explained in section IV-IV.C. 

C. DSR Addressing and Communication Protocol 
When a producer requests DSR establishment with a target 

consumer interface, the producer writes an Address Header to 
the SDC of its producer interface. The Address Header is 
composed of two fields, an X coordinate and a local identifier. 
The X coordinate indicates the horizontal location of the target 
switch connected to the consumer interface. The local identifier 
indicates the specific local output port to use between the target 
switch and the consumer interface. Use of a local identifier 
enables computing modules to separate different data stream 
types to different input ports. X coordinate and local identifier 
widths depends on the N and Ko architectural parameters 

After the producer interface receives the Address Header, 
the producer interface writes the Address Header to the 
connected switch’s input port and asserts REQ. The switch 
selects an arbitrary left or right (direction determined by the X 
coordinate field) output port that is not already assigned to a 
DSR and forwards the Address Header and asserts REQ on this 
output port. The connection between the input and output port 
is now reserved for this DSR. This similar process repeats as 
the Address Header propagates through neighboring switches 
until the Address Header reaches the target switch, in which 
case the Address Header is forwarded to the target consumer 
interface.  

When the target consumer interface receives a REQ, the 
consumer interface enters an Established Connection State and 
replies with a positive ACK. This ACK propagates through the 
switch array back to the producer interface, traversing the 
reserved input/output port connections at each switch. When 
the producer interface receives the asserted ACK, a DSR has 

been established between the producer and consumer 
interfaces. 

After DSR establishment, data can be transmitted between 
the producer and the consumer as a continuous low latency 
pipelined stream because our switch design uses only one 
register at each input port instead of a large, high latency FIFO. 
The DSR remains established as long as the producer interface 
asserts REQ. A producer interface deasserts REQ when the 
producer interface detects assertion of the EOS flag from the 
producer module.  

IV. SWITCH ARCHITECTURE 
Fig. 3 depicts the block level diagram of the SCORES 

switch architecture. The switch uses distributed arbitration and 
contains two main block types: input blocks and output blocks. 
Input and output blocks enable data to flow into and out of the 
switch, respectively. These blocks encapsulate and manage a 
switch’s input and output ports. External connections between 
neighboring switches input and output blocks, and internal 
connections between input and output blocks collectively 
enable inter-module communication. 

A. Output Blocks 
Output blocks are units responsible for controlling switch 

output ports. Output blocks are classified into three different 
types: left, right, and local output blocks. Left and right output 
blocks are responsible for all left and right output port 
management for the switch, respectively. To enable horizontal 
data transmission through the linear switch array, a switch’s 
left output blocks are connected to neighboring switch’s right 
input blocks (Section IV-B), and vice versa. To enable internal 
data transmission through a switch, left output blocks are 
internally connected to right input blocks (Section IV-B), and 
vice versa. Each switch has only one left and one right output 
block, but each block can be connected to multiple output 
ports. Local output blocks are responsible for local output port 
management, which connect the switch to computing module 
interfaces. 

Left and right output blocks are composed of three main 
units: a set of Remote FIFO Full registers, a set of Output 
Multiplexers (OMUX), and one Output Block Controller 
(OBC). Fig. 4 illustrates these units. There is one Remote FIFO 
Full register and one OMUX associated with each output port. 

 

 

 

 

Fig. 2: SCORES communication link 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: SCORES switch architectural components 

 

 

 



These registers latch the Remote FIFO Full signals coming 
from the respective output ports. The OMUX inputs are the 
outputs of the Data Input Registers (described in Section IV-B) 
from the internally connected input blocks. OMUX outputs 
drive the output port’s SDC. 

To establish internal connections, the OBC is an 
FSM-based controller that receives requests on input blocks for 
output port assignment. Requests are serviced using round 
robin arbitration (RRA). A Service Table records state 
(available or occupied) and assignment (which input block has 
been assigned which output port) for each output port. When 
the OBC services a request, the OBC checks the service table 
for an available output port. If an output port is available, the 
OBC configures the output port’s OMUX select lines to set the 
input data source as the Data Input Register from the 
requesting input block and records this connection in the 
service table. Finally, the OBC asserts ACK to the requesting 
input block. If no output port is available, the OBC replies with 
an asserted DENY signal to the requesting IBC. We refer to this 
condition as a blocking condition.   

Local output blocks are similar to the left and right output 
blocks, but differ in that there is one local output port per local 
output block because each output port has a unique local 
identifier. Thus, each switch may have multiple local output 
blocks. A service table is not required for local output blocks 
since the local output blocks manage only one output port. 

B. Input Blocks 
Input blocks are similar to output blocks in that there are 

three types of input blocks: left, right, and local input blocks. 
Each block type serves a similar purpose as the associated 
output block type described in Section IV-A. In contrast to left 
and right output blocks, there is one input block for each input 
port. Depending on the input block type, input blocks are 
connected with a subset of output blocks. Left input blocks are 
internally connected to the right output block and to all the 
local output blocks. Right input blocks are internally connected 
to the left output block and to all the local output blocks. 
Finally, each local input block is connected to both the left and 
right output blocks. Fig. 4 illustrates these connections. 

Input blocks are composed of three main units: one Data 
Input Register (DIR), one Input Multiplexer (IMUX), and one 

Input Block Controller (IBC). The DIR is W-bits wide and 
latches data from the SDC connected to the switch’s input port 
on each clock cycle. The IMUX selects the source for the 
Remote FIFO Full output at the input port. IMUX inputs are 
the Remote FIFO Full registers at the connected output 
blocks. The IBC is an FSM-based controller, which initially 
waits for assertion of an input port REQ from a neighboring 
switch or module interface. Upon REQ assertion, the IBC 
reads the value at the DIR (which contains the Address 
Header) and compares it with the X coordinate of the switch 
to determine an appropriate action. 

If the switch’s X coordinate is greater than the Address 
Header’s target X Coordinate field, then the IBC forwards the 
REQ to the left OBC. If the switch’s X coordinate is smaller 
than the Address Header’s target X Coordinate field, then the 
IBC forwards the REQ to the right OBC. If the switch’s X 
coordinate equals the Address Header’s target X Coordinate 

field, then the IBC sends the request to the OBC at the local 
output port indicated by the local identifier in the Address 
Header field. We refer to this routing scheme as X Routing. 

Once the IBC receives an ACK signal from the requested 
OBC, the IBC sets the control bits of its IMUX to select the 
Remote FIFO Full coming from the assigned output port. 
However, since the left and right OBCs manage several output 
ports, it is necessary to know from which specific output port 
the Remote FIFO Full originates. Therefore, the IMUX receives 
select lines from the IBC and the left and right OBCs. IMUXes 
do not receive select lines from the local output blocks, because 
local output blocks only manage one output port. 

C. Blocking Conditions  
It is possible that the number of input blocks requesting 

service from an OBC exceeds the number of available output 
ports. In this situation, the OBC responds with an asserted 
DENY signal to all the IBCs to which it cannot yet assign an 
output port. The DENY signal backward propagates through the 
partially established communication path to the source 
producer module from which the REQ was generated. Upon 
receiving a DENY signal, the producer module can either hold 
the asserted REQ signal (persistent request) or deassert the 
REQ signal for a later retransmission attempt. Deasserting the 
REQ signal also releases the partially established 
communication path.  

If a large number of source producer modules which 
receive a DENY signal do not deassert their REQs, excess input 
blocks are still queued at the saturated OBC waiting for an 
available output port, and thus impose queuing delays. 
Blocking condition delays are critical to the left and right 
output blocks since the majority of inter-module 
communication passes through the left and right output ports. 
In SCORES, increasing the Kr and Kl architectural parameters 
(the number of output ports) can reduce blocking conditions.  

V. COMPUTING MODULE INTERFACES 
Computing module interfaces connect computing modules 

to a SCORES switch. These module interfaces are based on 
dual-clocked FIFOs. These FIFOs buffer data and enable clock 
domain isolation between the communication architecture and 
the computing modules. By separating clock domains, each 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4: SCORES switch showing internal connections between a local input 
block and the left, right, and local output blocks 

 



computing module can run at an independent and optimized 
clock frequency.  

We created FIFOs using the Xilinx Coregen FIFO 
Generator 4.3 [15]. This tool enables customization of both 
FIFO depth and width (of which the width was set to match the 
switch’s W architectural parameter). Xilinx Coregen tool 
allows FIFOs to be implemented using distributed memory or 
embedded BlockRAMs. 

A. Producer Module Interfaces 
Fig. 5 (a) illustrates the detailed producer module interface 

architecture. Signals between the module output port and the 
producer interface are: Data_in, WR_EN (Write enable), 
OS_RDY (Output Stream Ready), EOS (End of Stream), and 
DENY. The FIFO’s data input (in) and output (out) are the 
combination of data_in, EOS, and WR_EN. The producer 
module asserts WR_EN to begin data transmission to the 
producer interface. The producer module asserts EOS when 
data transmission has completed, allowing the producer module 
interface to release the DSR.  

Initially, the producer interface controller (FSM) waits for 
an Address Header on data_in from the producer module to 
begin DSR establishment. During this initial state, the FIFO 
empty and full signals are asserted and deasserted, respectively. 
When the producer module transmits the Address Header, the 
FIFO stores data_in and deasserts empty. The FIFO is 
synthesized using the first word fall through feature, which 
enables the Address Header to be available on data_out 
without a read operation (eliminating read delay). Upon 
deassertion of empty, the FSM asserts REQ to the switch’s local 
input port. Upon ACK assertion from the switch’s local input 
port, the FSM asserts the link_established signal, which 
indicates DSR establishment.  

The FSM asserts OS_RDY when two conditions are 
satisfied: (1) the FIFO has available space (full is not asserted) 
and (2) the DSR is established (link_established is asserted). 
Since data transmission is not ready until assertion of both 
link_established and WR_EN (MSB of out), these signals are 

AND’ed and serve as the producer interface’s data_out output 
to the connected switch.  

After a DSR is established, the producer interface continues 
writing data from out to the switch’s local input port on 
data_out while FIFO is not empty and a Remote FIFO Full 
feedback flag has not been received from the switch. Finally, 
upon detecting EOS assertion from the producer module, the 
FSM deasserts REQ, which initiates the release of the DSR. 

B. Consumer Module Interfaces 
Fig. 5 (b) illustrates the detailed consumer module interface 

architecture. Signals between a module input port and the 
consumer interface are: data_in, RD_EN (Read Enable), 
IS_RDY (Input Stream Ready), and EOS (End of Stream). The 
module asserts RD_EN to enable reading from the FIFO. The 
module interface asserts IS_RDY when the FIFO contains data 
waiting to be read. Since the MSB of data_in indicates 
WR_EN, data_in coming from the switch’s local output port is 
written into the FIFO if WR_EN is asserted.  

Consumer interfaces are responsible for asserting Remote 
FIFO Full for DSR flow control. A consumer interface must 
assert Remote FIFO Full before the FIFO reaches maximum 
capacity due to in-flight data and the Remote FIFO Full 
propagation delay through the switch array. Therefore, the 
consumer interface must take into consideration its X location 
(Xc) and the producer interface’s X location (Xp). Thus, the 
consumer interface asserts Remote FIFO Full when the 
remaining space in the FIFO is equal to 2(N-|Xc-Xp|). 

VI. RESULTS 

A. Experimental Setup  
We implemented our SCORES communication 

architecture, switch, and module interfaces as highly parametric 
VHDL soft cores, providing the architectural parameters: N, W, 
Kr, Kl, Ki, and Ko. FIFOs, implemented using one embedded 
BlockRAM, stored 512 32-bit words. The target device was a 
Virtex 4 XC4VLX25 [16] and system simulation was 
performed using Modelsim 6.2 SE [8]. 

Given the massive configurability of SCORES due to the 
numerous architectural parameters, we wrote a Perl script to 
execute Xilinx synthesis and implementation tools (ISE 10.1) 
[14] for a standalone switch of varying configurations. These 
configurations enabled architectural parameter impact 
evaluation on selected performance metrics such as slice 
utilization and maximum clock frequency. In a real scenario, 
Kr, Kl, Ki and Ko would be specialized to the target 
application. We measured maximum clock frequency after 
place-and-route using the Xilinx Trace static timing analysis 
tool with no clock constraint (trce –a –u).  

B. Area Usage and Timing Analysis 
 Fig. 6 shows area usage in slices (top row) and maximum 

attainable clock frequency (bottom row) versus varying 
architectural parameters for channel widths W = 8, 16, 32, and 
64 bits for a single switch. The first, second, and third columns 
vary Kr, Kr and Kl, and Ki and Ko, respectively. We consider 
the case in which only Kr is varied to account for applications 
in which most data flow occurs in only one direction such as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Module interfaces: (a) producer interface, (b) consumer interface. 
 

 



DSP or image processing. Fig. 6 (top row) shows low switch 
area overhead, which scales well due to a small cross point 
matrix (composed of OMUXes and IMUXes). For example, the 
area overhead for a sample system configuration, W = 32, Kr = 
2, Kl = 2, Ki = 1, and Ko = 1, is only 399 slices, which accounts 
for 1.62% of the XC4VLX25. Doubling the channel width 
from W = 32 to W = 64 (with the same system configuration Kr 
= 2, Kl = 2, Ki = 1, and Ko = 1) increases slice usage by only 
60% to only 639 slices, revealing a sublinear increase in area 
verses channel width.  

Maximum clock frequency is a very important metric since 
it determines the maximum data throughput achievable by 
SCORES. Given a data word of length W, (with the two MSBs 
reserved for WR_EN and EOS) the peak data throughput in 
Gbps for SCORES is: 

€ 

data_throughput (Gbps) = (W − 2) *max_frequency  

Fig. 6 (bottom row) shows that for all test configurations, the 
operating frequency ranges from 161 MHz to 311 MHz. 
Therefore, the data throughput peaks at 161*(32-2) = 4.8 Gbps 
for an SDC width of W = 32 bits, which is competitive with 
previous work. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduce a novel highly parametric, 

Scalable COmmunication architecture for REconfigurable 
Systems (SCORES). SCORES consists of highly parametric 
VHDL soft-core switches with distributed arbiters, which 
reduces the inefficiencies associated with centralized arbiters. 
SCORES enables runtime establishment of simultaneous and 
dedicated streaming communication links between computing 
modules. Results show that SCORES is highly scalable in 
terms of area overhead and can achieve high operating 
frequencies even for large systems (high number of computing 
modules). 

Future work includes a pipelined implementation of the 
output block controller (OBC) to decrease connection 
establishment time. We also plan to expand to a 2D mesh in 
order to reduce blocking conditions and increase design 
flexibility. In addition, we also plan to develop an optimization 
technique for automatic computing module placement and 

architectural parameter sizing based on an application’s 
connectivity graph.  
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Fig. 6: Area in slices (top row) and maximum clock frequency (bottom row) verses varying architectural parameters for channel widths W = 8, 16, 32, and 64 bits. 
 


