
SCORES: A Scalable and Parametric Streams-Based
Communication Architecture for Modular

Reconfigurable Systems
Abelardo Jara-Berrocal and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)
ECE Department, University of Florida, Gainesville, FL 32611

{berrocal, ann}@chrec.org

Abstract - Parallel architectures have become an increasingly
popular method in which to achieve high performance with low
power consumption. In order to leverage these benefits,
applications are decomposed into multiple computational
modules (tasks) that collectively operate and communicate in
parallel. In this paper, we present a scalable and highly
parametric streams-based communication architecture for
inter-module communication for FPGA-based systems –
SCORES. This communication architecture improves on
previous methods by providing increased application
specialization and heterogeneous module clock frequencies, as
well as providing a means for low latency communication and
data throughput guarantees.

I. INTRODUCTION AND MOTIVATION
One of the most important design considerations in VLSI

digital systems is achieving high performance with low power
consumption. Parallel architectures provide a popular method
in which to achieve these goals [6]. Parallel architectures
enable application decomposition into multiple computing
modules, operating and communicating in parallel and which
collectively encompass entire application behavior.

In order to exploit potential speedup as the number of
modules increases, an efficient communication architecture to
support inter-module communication is required. Traditional
bus-based communication architectures enable all computing
modules to communicate over a common shared bus, providing
great flexibility for varying levels of inter-module
communication requirements. However, bus-based
communication architectures scale poorly as the number of
computing modules increases [5]. This poor scalability results
from shared transmission media contention and long routing
wire delays, of which collectively imply long routing delays,
reduced maximum clock frequency, and reduced throughput.

In order to alleviate some of the bus-based communication
architecture drawbacks, a Network-on-Chip (NoC) architecture
was proposed as a paradigm for scalable and parallel
communication architectures [3]. NoCs are constructed as a
topology of networked nodes connected by physical
communication links. Each computing module is attached to
this topology via a networked node. Depending on the
communication scheme used, networked nodes can be
classified as routers (packet switching) or switches (circuit
switching).

NoCs appear to be a good alternative to bus-based
communication. Network nodes provide breaks in the long
routing wires inherent in a bus-based architecture, and therefore
typically achieve higher operating frequencies. Furthermore,
the main advantage of a NoC is scalability and specialization
[11]. NoCs are commonly implemented as parametric HDL
soft cores. Architectural parameters such as topology
dimensions (width and height in number of routers), width and
number of ports per node, and buffer depth enable architectural
tuning to a specific target application [11].

NoC design was initially targeted for ASICs, although
relatively recent research has extended these architectures to
FPGAs [4][7][10][11][12][13]. However, FPGA-based designs
commonly show four main limitations: high communication
latency, no throughput guarantee, limited number of
architectural parameters, and a significant area overhead.
Furthermore, there is no standardized connection interface for
computing modules, which forces computing module
specialization to a specific NoC, reducing design reusability.

High communication latency and lack of throughput
guarantee is a problem for some application domains. For
example, DSP and image processing applications typically
stream data between computing modules. Low latency and
guaranteed throughput are required due to these system’s
real-time constraints. However, it is difficult for NoCs to meet
these constraints, because NoCs were primarily designed for
best effort delivery and not for quality of service guarantees.

In this paper, we present a novel Scalable COmmunication
architecture for REconfigurable Systems (SCORES). SCORES
utilizes a streams-based approach to transmit data between
computing modules through dynamically established
non-shared streaming channels. These channels enable low
latency and guaranteed throughput. SCORES also features
numerous tunable architectural parameters, offering increased
application specialization compared to previous work. In
addition, we present a simple, scalable, and highly parametric
switch, which forms the basis for the SCORES communication
architecture. Computation modules connect to switches using
FIFO-based module interfaces, which enable heterogeneous
module clock frequencies.

II. RELATED WORK
Marescaux et al. [7] presented the first working

implementation of an FPGA-based NoC communication
architecture built from store and forward (SF) routers. NoC
topology was a 2D mesh and used deterministic XY routing
[7]. Each router had five input ports and five output ports with
16 data bits per port. The SF technique introduced high
transmission latencies due to packetization and queuing delays.
Queuing delays were incurred due to the centralized arbiter
inside each router to establish all input and output port
connections. Additionally, the routers used one FIFO at each
router input port for packet buffering. Because links between
routers were time-shared between multiple simultaneous
connections and these connections were dynamically
established at runtime, throughput could not be guaranteed. A
standalone router required 446 slices (4.8% of device usage) on
the Xilinx Virtex XCV800.

Zerferino et al. presented SoCIN [12], a 2D mesh NoC built
using wormhole routers. As opposed to SF routers that sent
data messages as one large packet, wormhole routers split data
messages into one header flit containing routing information
and one or more smaller data flits for message transmission. If
an output port was available, the header flit was routed and the
remaining data flits followed in a pipelined method. When a
message traversed the network, the message flits were located
in multiple routers. Flits reduced FIFO memory requirements
and transmission latency compared to packets. Modifiable
architectural parameters included channel width and buffer
depth. To reduce queuing delays, SoCIN replaced a centralized
arbitration scheme with a distributed scheme by incorporating
one arbiter per each router output port. However, SoCIN had
high resource utilization for a standalone router. Each router
accounted for as much as 11% of a Xilinx V2PRO V2P30 [10].

Sethuraman et al. designed a 2D NoC using an SF router
called LiPaR [10]. Modifiable architectural parameters
included channel width and buffer depth. The NoC used the
FIFOs’ empty flags in order to govern transmission
synchronization inside and between the routers, which
significantly reduced control logic complexity. However, the
router had a complex cross point switch matrix. The router ran
at 33.33 MHz and required 352 slices (2.7% of device usage)
on a Xilinx Virtex 2 Pro V2P30 for a minimum sized channel
width of 8 bits (excluding FIFO buffer resources).

Sedcole et al. presented a bus-based communication
architecture called Sonic-on-a-Chip [9] for reconfigurable
image processing systems, which leveraged NoC concepts.
Dedicated communication streaming channels between
computing modules were dynamically established by allocating
frame slots inside the time-multiplexed bus. System
performance was comparatively slow to NoC-based designs
(50 MHz for V2Pro) due to the long routing wires inherent in a
bus-based architecture.

Ahmadinia et al. proposed the RMBoC (reconfigurable
multiple bus on-chip) architecture [1]. Communication links
connected switches in a linear array. Architectural parameters
included number and width of communication links. Switches
had only one input and one output port for module connections.
Switches used a centralized FIFO and arbiter to receive all
connection requests. Switches dynamically established
dedicated communication paths between modules, although,
the architecture did not leverage flow control, which is
problematic when a module exhausts buffer memory. Finally,
the modules and communication architecture were required to
operate at the same clock frequency. RMBoC achieved an
operating frequency of 99 MHz and required 3407 slices (10%
of device usage) on a Virtex II 6000 for a design with four
switches and four communication links between switches.

III. SCORES ARCHITECTURE
Fig. 1 depicts the top-level design of the SCORES

communication architecture. SCORES is composed of a linear
array of switches (one switch is highlighted in gray shading).
Each switch has a unique X coordinate indicating its horizontal
position inside the linear array. Switches communicate with
neighboring switches (Kl and Kr) and computing module
interfaces (Ki and Ko) through bidirectional communication
links between their input and output ports.

Computing modules attach to switches through two types of
module interfaces. Consumer Interfaces connect a computing
module’s input port to a switch’s local output port (Ko).
Producer Interfaces connect a computing module’s output port
to a switch’s local input port (Ki).

Dynamically established Dedicated Streaming Routes
(DSRs) enable data transmission between two computing
modules. These dedicated routes provide high throughput and
low latency data transmission. For each DSR, we refer to the
producer as the module sending data and the consumer as the
module receiving data. A computing module can be both a
producer and consumer simultaneously.

A. Architectural Parameters
SCORES is a highly parametric communication architecture.

Our design offers six tunable architectural parameters: N, W,
Kr, Kl, Ki, and Ko (Fig. 1). N represents the number of
switches in the linear array. W is the width of the
communication links and switch input and output ports. Ki, Ko,
Kr, and Kl represent the number of local input ports, local
output ports, right output and left input ports, and left output
and right input ports, respectively, for each switch. Thus, a
switch has Kl and Kr communication links to the left and right
neighboring switches, respectively.

Fig. 1: Top SCORES communication architecture

B. Communication Links
Communication links, illustrated in Fig. 2, connect a switch

with neighboring switches and computing modules. The link
consists of two opposite flowing data channels and three
handshaking signals.

The Streaming Data Channel (SDC) is the main channel
and transmits data from a switch or computing module output
port to the connected input port. The two most significant bits
(MSBs) of the SDC are reserved for signaling. The MSB is the
Write Enable (WR_EN) and indicates that the producer is
transmitting a word. The second MSB is the End of Stream
(EOS) and indicates that the producer has completed data
transmission and that the DSR can be released. The remaining
W-2 least significant bits (LSBs) of the SDC carry data. The
Stream Feedback Channel (SFC) is a single signal, Remote
FIFO Full, which indicates that the consumer FIFO is full, and
therefore the producer must pause data transmission. The
handshaking signals (REQ and ACK) establish and release a
DSR. The DENY signal will be explained in section IV-IV.C.

C. DSR Addressing and Communication Protocol
When a producer requests DSR establishment with a target

consumer interface, the producer writes an Address Header to
the SDC of its producer interface. The Address Header is
composed of two fields, an X coordinate and a local identifier.
The X coordinate indicates the horizontal location of the target
switch connected to the consumer interface. The local identifier
indicates the specific local output port to use between the target
switch and the consumer interface. Use of a local identifier
enables computing modules to separate different data stream
types to different input ports. X coordinate and local identifier
widths depends on the N and Ko architectural parameters

After the producer interface receives the Address Header,
the producer interface writes the Address Header to the
connected switch’s input port and asserts REQ. The switch
selects an arbitrary left or right (direction determined by the X
coordinate field) output port that is not already assigned to a
DSR and forwards the Address Header and asserts REQ on this
output port. The connection between the input and output port
is now reserved for this DSR. This similar process repeats as
the Address Header propagates through neighboring switches
until the Address Header reaches the target switch, in which
case the Address Header is forwarded to the target consumer
interface.

When the target consumer interface receives a REQ, the
consumer interface enters an Established Connection State and
replies with a positive ACK. This ACK propagates through the
switch array back to the producer interface, traversing the
reserved input/output port connections at each switch. When
the producer interface receives the asserted ACK, a DSR has

been established between the producer and consumer
interfaces.

After DSR establishment, data can be transmitted between
the producer and the consumer as a continuous low latency
pipelined stream because our switch design uses only one
register at each input port instead of a large, high latency FIFO.
The DSR remains established as long as the producer interface
asserts REQ. A producer interface deasserts REQ when the
producer interface detects assertion of the EOS flag from the
producer module.

IV. SWITCH ARCHITECTURE
Fig. 3 depicts the block level diagram of the SCORES

switch architecture. The switch uses distributed arbitration and
contains two main block types: input blocks and output blocks.
Input and output blocks enable data to flow into and out of the
switch, respectively. These blocks encapsulate and manage a
switch’s input and output ports. External connections between
neighboring switches input and output blocks, and internal
connections between input and output blocks collectively
enable inter-module communication.

A. Output Blocks
Output blocks are units responsible for controlling switch

output ports. Output blocks are classified into three different
types: left, right, and local output blocks. Left and right output
blocks are responsible for all left and right output port
management for the switch, respectively. To enable horizontal
data transmission through the linear switch array, a switch’s
left output blocks are connected to neighboring switch’s right
input blocks (Section IV-B), and vice versa. To enable internal
data transmission through a switch, left output blocks are
internally connected to right input blocks (Section IV-B), and
vice versa. Each switch has only one left and one right output
block, but each block can be connected to multiple output
ports. Local output blocks are responsible for local output port
management, which connect the switch to computing module
interfaces.

Left and right output blocks are composed of three main
units: a set of Remote FIFO Full registers, a set of Output
Multiplexers (OMUX), and one Output Block Controller
(OBC). Fig. 4 illustrates these units. There is one Remote FIFO
Full register and one OMUX associated with each output port.

Fig. 2: SCORES communication link

Fig. 3: SCORES switch architectural components

These registers latch the Remote FIFO Full signals coming
from the respective output ports. The OMUX inputs are the
outputs of the Data Input Registers (described in Section IV-B)
from the internally connected input blocks. OMUX outputs
drive the output port’s SDC.

To establish internal connections, the OBC is an
FSM-based controller that receives requests on input blocks for
output port assignment. Requests are serviced using round
robin arbitration (RRA). A Service Table records state
(available or occupied) and assignment (which input block has
been assigned which output port) for each output port. When
the OBC services a request, the OBC checks the service table
for an available output port. If an output port is available, the
OBC configures the output port’s OMUX select lines to set the
input data source as the Data Input Register from the
requesting input block and records this connection in the
service table. Finally, the OBC asserts ACK to the requesting
input block. If no output port is available, the OBC replies with
an asserted DENY signal to the requesting IBC. We refer to this
condition as a blocking condition.

Local output blocks are similar to the left and right output
blocks, but differ in that there is one local output port per local
output block because each output port has a unique local
identifier. Thus, each switch may have multiple local output
blocks. A service table is not required for local output blocks
since the local output blocks manage only one output port.

B. Input Blocks
Input blocks are similar to output blocks in that there are

three types of input blocks: left, right, and local input blocks.
Each block type serves a similar purpose as the associated
output block type described in Section IV-A. In contrast to left
and right output blocks, there is one input block for each input
port. Depending on the input block type, input blocks are
connected with a subset of output blocks. Left input blocks are
internally connected to the right output block and to all the
local output blocks. Right input blocks are internally connected
to the left output block and to all the local output blocks.
Finally, each local input block is connected to both the left and
right output blocks. Fig. 4 illustrates these connections.

Input blocks are composed of three main units: one Data
Input Register (DIR), one Input Multiplexer (IMUX), and one

Input Block Controller (IBC). The DIR is W-bits wide and
latches data from the SDC connected to the switch’s input port
on each clock cycle. The IMUX selects the source for the
Remote FIFO Full output at the input port. IMUX inputs are
the Remote FIFO Full registers at the connected output
blocks. The IBC is an FSM-based controller, which initially
waits for assertion of an input port REQ from a neighboring
switch or module interface. Upon REQ assertion, the IBC
reads the value at the DIR (which contains the Address
Header) and compares it with the X coordinate of the switch
to determine an appropriate action.

If the switch’s X coordinate is greater than the Address
Header’s target X Coordinate field, then the IBC forwards the
REQ to the left OBC. If the switch’s X coordinate is smaller
than the Address Header’s target X Coordinate field, then the
IBC forwards the REQ to the right OBC. If the switch’s X
coordinate equals the Address Header’s target X Coordinate

field, then the IBC sends the request to the OBC at the local
output port indicated by the local identifier in the Address
Header field. We refer to this routing scheme as X Routing.

Once the IBC receives an ACK signal from the requested
OBC, the IBC sets the control bits of its IMUX to select the
Remote FIFO Full coming from the assigned output port.
However, since the left and right OBCs manage several output
ports, it is necessary to know from which specific output port
the Remote FIFO Full originates. Therefore, the IMUX receives
select lines from the IBC and the left and right OBCs. IMUXes
do not receive select lines from the local output blocks, because
local output blocks only manage one output port.

C. Blocking Conditions
It is possible that the number of input blocks requesting

service from an OBC exceeds the number of available output
ports. In this situation, the OBC responds with an asserted
DENY signal to all the IBCs to which it cannot yet assign an
output port. The DENY signal backward propagates through the
partially established communication path to the source
producer module from which the REQ was generated. Upon
receiving a DENY signal, the producer module can either hold
the asserted REQ signal (persistent request) or deassert the
REQ signal for a later retransmission attempt. Deasserting the
REQ signal also releases the partially established
communication path.

If a large number of source producer modules which
receive a DENY signal do not deassert their REQs, excess input
blocks are still queued at the saturated OBC waiting for an
available output port, and thus impose queuing delays.
Blocking condition delays are critical to the left and right
output blocks since the majority of inter-module
communication passes through the left and right output ports.
In SCORES, increasing the Kr and Kl architectural parameters
(the number of output ports) can reduce blocking conditions.

V. COMPUTING MODULE INTERFACES
Computing module interfaces connect computing modules

to a SCORES switch. These module interfaces are based on
dual-clocked FIFOs. These FIFOs buffer data and enable clock
domain isolation between the communication architecture and
the computing modules. By separating clock domains, each

Fig. 4: SCORES switch showing internal connections between a local input
block and the left, right, and local output blocks

computing module can run at an independent and optimized
clock frequency.

We created FIFOs using the Xilinx Coregen FIFO
Generator 4.3 [15]. This tool enables customization of both
FIFO depth and width (of which the width was set to match the
switch’s W architectural parameter). Xilinx Coregen tool
allows FIFOs to be implemented using distributed memory or
embedded BlockRAMs.

A. Producer Module Interfaces
Fig. 5 (a) illustrates the detailed producer module interface

architecture. Signals between the module output port and the
producer interface are: Data_in, WR_EN (Write enable),
OS_RDY (Output Stream Ready), EOS (End of Stream), and
DENY. The FIFO’s data input (in) and output (out) are the
combination of data_in, EOS, and WR_EN. The producer
module asserts WR_EN to begin data transmission to the
producer interface. The producer module asserts EOS when
data transmission has completed, allowing the producer module
interface to release the DSR.

Initially, the producer interface controller (FSM) waits for
an Address Header on data_in from the producer module to
begin DSR establishment. During this initial state, the FIFO
empty and full signals are asserted and deasserted, respectively.
When the producer module transmits the Address Header, the
FIFO stores data_in and deasserts empty. The FIFO is
synthesized using the first word fall through feature, which
enables the Address Header to be available on data_out
without a read operation (eliminating read delay). Upon
deassertion of empty, the FSM asserts REQ to the switch’s local
input port. Upon ACK assertion from the switch’s local input
port, the FSM asserts the link_established signal, which
indicates DSR establishment.

The FSM asserts OS_RDY when two conditions are
satisfied: (1) the FIFO has available space (full is not asserted)
and (2) the DSR is established (link_established is asserted).
Since data transmission is not ready until assertion of both
link_established and WR_EN (MSB of out), these signals are

AND’ed and serve as the producer interface’s data_out output
to the connected switch.

After a DSR is established, the producer interface continues
writing data from out to the switch’s local input port on
data_out while FIFO is not empty and a Remote FIFO Full
feedback flag has not been received from the switch. Finally,
upon detecting EOS assertion from the producer module, the
FSM deasserts REQ, which initiates the release of the DSR.

B. Consumer Module Interfaces
Fig. 5 (b) illustrates the detailed consumer module interface

architecture. Signals between a module input port and the
consumer interface are: data_in, RD_EN (Read Enable),
IS_RDY (Input Stream Ready), and EOS (End of Stream). The
module asserts RD_EN to enable reading from the FIFO. The
module interface asserts IS_RDY when the FIFO contains data
waiting to be read. Since the MSB of data_in indicates
WR_EN, data_in coming from the switch’s local output port is
written into the FIFO if WR_EN is asserted.

Consumer interfaces are responsible for asserting Remote
FIFO Full for DSR flow control. A consumer interface must
assert Remote FIFO Full before the FIFO reaches maximum
capacity due to in-flight data and the Remote FIFO Full
propagation delay through the switch array. Therefore, the
consumer interface must take into consideration its X location
(Xc) and the producer interface’s X location (Xp). Thus, the
consumer interface asserts Remote FIFO Full when the
remaining space in the FIFO is equal to 2(N-|Xc-Xp|).

VI. RESULTS

A. Experimental Setup
We implemented our SCORES communication

architecture, switch, and module interfaces as highly parametric
VHDL soft cores, providing the architectural parameters: N, W,
Kr, Kl, Ki, and Ko. FIFOs, implemented using one embedded
BlockRAM, stored 512 32-bit words. The target device was a
Virtex 4 XC4VLX25 [16] and system simulation was
performed using Modelsim 6.2 SE [8].

Given the massive configurability of SCORES due to the
numerous architectural parameters, we wrote a Perl script to
execute Xilinx synthesis and implementation tools (ISE 10.1)
[14] for a standalone switch of varying configurations. These
configurations enabled architectural parameter impact
evaluation on selected performance metrics such as slice
utilization and maximum clock frequency. In a real scenario,
Kr, Kl, Ki and Ko would be specialized to the target
application. We measured maximum clock frequency after
place-and-route using the Xilinx Trace static timing analysis
tool with no clock constraint (trce –a –u).

B. Area Usage and Timing Analysis
 Fig. 6 shows area usage in slices (top row) and maximum

attainable clock frequency (bottom row) versus varying
architectural parameters for channel widths W = 8, 16, 32, and
64 bits for a single switch. The first, second, and third columns
vary Kr, Kr and Kl, and Ki and Ko, respectively. We consider
the case in which only Kr is varied to account for applications
in which most data flow occurs in only one direction such as

Fig. 5: Module interfaces: (a) producer interface, (b) consumer interface.

DSP or image processing. Fig. 6 (top row) shows low switch
area overhead, which scales well due to a small cross point
matrix (composed of OMUXes and IMUXes). For example, the
area overhead for a sample system configuration, W = 32, Kr =
2, Kl = 2, Ki = 1, and Ko = 1, is only 399 slices, which accounts
for 1.62% of the XC4VLX25. Doubling the channel width
from W = 32 to W = 64 (with the same system configuration Kr
= 2, Kl = 2, Ki = 1, and Ko = 1) increases slice usage by only
60% to only 639 slices, revealing a sublinear increase in area
verses channel width.

Maximum clock frequency is a very important metric since
it determines the maximum data throughput achievable by
SCORES. Given a data word of length W, (with the two MSBs
reserved for WR_EN and EOS) the peak data throughput in
Gbps for SCORES is:

€

data_throughput (Gbps) = (W − 2) *max_frequency

Fig. 6 (bottom row) shows that for all test configurations, the
operating frequency ranges from 161 MHz to 311 MHz.
Therefore, the data throughput peaks at 161*(32-2) = 4.8 Gbps
for an SDC width of W = 32 bits, which is competitive with
previous work.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce a novel highly parametric,

Scalable COmmunication architecture for REconfigurable
Systems (SCORES). SCORES consists of highly parametric
VHDL soft-core switches with distributed arbiters, which
reduces the inefficiencies associated with centralized arbiters.
SCORES enables runtime establishment of simultaneous and
dedicated streaming communication links between computing
modules. Results show that SCORES is highly scalable in
terms of area overhead and can achieve high operating
frequencies even for large systems (high number of computing
modules).

Future work includes a pipelined implementation of the
output block controller (OBC) to decrease connection
establishment time. We also plan to expand to a 2D mesh in
order to reduce blocking conditions and increase design
flexibility. In addition, we also plan to develop an optimization
technique for automatic computing module placement and

architectural parameter sizing based on an application’s
connectivity graph.

ACKNOWLEDGEMENTS
This work was supported in part by the I/UCRC Program of

the National Science Foundation under Grant No.
EEC-0642422. We gratefully acknowledge tools provided by
Xilinx.

REFERENCES
[1] A. Ahmadinia, C. Bobda, J. Ding, M. Majar, J. Teich, S. Fekete, and J.

Veen. A practical approach for circuit routing on dynamic reconfigurable
devices. In RSP 2005, pages 84–90

[2] Altera Inc., http://www.altera.com, 2008
[3] L. Benini and G. De Micheli. Networks on chips: A new SOC paradigm.

In IEEE Computer, pages 70-78, 2002
[4] C. Bobda and A. Ahmadinia, Dynamic interconnection of reconfigurable

modules on reconfigurable devices. IEEE Design & Test of Computers,
vol. 22, no. 5, pages 443–451, 2005

[5] W.J. Dally and B. Towles. Route packets, not wires: on-chip
inter-connection networks. In DATE 2001, pages 684–689

[6] International Technology Roadmap for Semiconductors 2007. In
http://public.itrs.net, 2007

[7] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins.
Interconnection networks enable fine-grain dynamic multi-tasking on
FPGAs. In FPL 2002, pages 795-805

[8] Mentor Graphics, http://www.mentor.com, 2008
[9] P. Sedcole, P. Y. K. Cheung, G. A. Constantinides and W. Luk,

Run-time integration of reconfigurable video processing systems. In
IEEE Transactions on VLSI Systems, Vol. 15, No. 9, , pp 1003-1016,
2007

[10] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri. LiPaR: A
light-weight parallel router for FPGA-based networks-on-chip. In
GLSVLSI 2005

[11] D. Wang, H. Matsutani, M. Yoshimi, M. Koibuchi, and H. Amano. A
parametric study of scalable interconnects on FPGAs. In ERSA 2006,
pages 130–135

[12] C.A. Zerferino and A.A. Susin. SoCIN: A parametric and scalable
network on chip. In SBCCI 2003, pages 169-174

[13] C.A. Zeferino, M. E. Kreutz, and A.A. Susin. RASoC: A router soft-core
for networks-on-chip. In DATE 2004.

[14] Xilinx Inc., http://www.xilinx.com, 2008
[15] Xilinx. FIFO Generator 4.3 Datasheet. DS317. March 24, 2008
[16] Xilinx Virtex 4 User Guide. UG070 v2.6. December 1, 2008

Fig. 6: Area in slices (top row) and maximum clock frequency (bottom row) verses varying architectural parameters for channel widths W = 8, 16, 32, and 64 bits.

