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Abstract

Logic partitioning is an important issue in VLS CAD, and has been an active area of
research for at least the last 25 years. Numerous approaches have been developed and
many different techniques have been combined for a wide range of applications. In this
paper, we examine many of the existing techniques for logic bipartitioning and present a
methodology for determining the best mix of approaches. The result is a novel
bipartitioning algorithm that includes both new and pre-existing techniques. Our
algorithm produces results that are at least 17% better than the state-of-the-art while also
being efficient in run time.

I ntroduction

Logic partitioning is one of the critical issuesin CAD for digital logic. Effective
algorithmsfor partitioning circuits enable us to apply divide-and-conquertechniquesto
simplify most of the steps in thmapping process. For example,standard-celldesignscan
be broken up so that a placement tool need only consider a poftibre overall designat
any one time, yieldindnigher-quality results,using a possibly lessefficient algorithm, in a
shorter period of time. Also, large designs miostoroken up into piecessmall enoughto
fit into multiple devices. Traditionally, this problem was important for breaking up a
complex systeminto severalcustomASICs. Now, with the increasinguse of FPGA-based
emulators and prototyping systems, partitioning is becoming even more critical.

For all of these tasks, the goal is to minimize the communication betpagttions while
ensuring thatachpartition is no larger than the capacityof the targetdevice. While it is
possibleto solvethe caseof unboundedpartition sizesexactly [1], the caseof balanced
partition sizes is NP-complete [2]. As a result numerous heuristics have been proposed.

In a 1988 surveyf partitioning algorithms[3] Donath stated“there is a disappointing
lack of datacomparingpartitioning algorithms”, and “unfortunately, comparisonsof the
available algorithms have not kept pagith their developmentso we cannotalwaysjudge
the cost-effectiveness of the different method¥his statementstill holds true, with many
approaches bufew overall comparisons. This paperaddresseshe bipartitioning problem
by comparing many of the existing techniques,along with some new optimizations. It
focuses primarily on those approachesthat build on the Kernighan-Lin, Fiduccia-
Mattheyses (KLFM) algorithm [4, 5].

One of the surprising results to emerge from this stigdizat by appropriatelyapplying
existing techniquesan algorithm basedupon KLFM can produce better resultsthan the
current state-of-the-art. In table 1 we presentthe results of our algorithm (Optimized
KLFM), along with results of three of the best current methods (Parf@plEIG1 [7], and
Network Flow [8]), ona setof standardbenchmarkg9]. Note that the EIG1 algorithm is
meant to be used for ratio-cut partitioning, not mincut partitioning as presented here.

The resultsshow that our algorithm produces significantly better solutions than the
current state-of-the-artbipartitioning algorithms, with the nearestcompetitor producing
results 21% worse than ours (thus, our algorithm is 17% bet@uy. algorithm is also fast,
taking at most 7 minutes on thergestexamples. Note that bipartitioning with replication
has shown some promising results (all of the algorithms in the tabtetdesereplication).



Kuznar et al [10, 11] has reported resultsonly 7-10% worse than ours. However,these
resultshaveno cap on the maximum partition size,while all other trials havea maximum
partition size 0f55% of the logic. In fact, someof Kuznar et al’s runs have partitions of
size 60% or larger. As will be discussedallowing a partitionerto usea larger maximum
partition size can greatly reduce the cutsiee. Also, their work doesnot include primary
inputs connected to both partitioas part of the cutset,while the cutsizesreportedfor the
other approaches, including ours, do include such primary inputs in the cutset.

Mapping Basic KLFM | Optimized KLFM EIG1 Paraboli Network Flow
s$38584 243 52 76 55 47
35932 136 46 105 62 49
515850 105 46 215 91 67
513207 105 62 241 91 74
s$9234 65 45 227 74 70
Mean 118.8 49.8 156.5 73.1 60.3
Normalized 2.386 1.000 3.143 1.468 1.211

Table 1. Quality comparison of partitioning methods. Values for KLFM and
Optimized KLFM 1 are the best of ten trials. The EIG1 and Paraboli results are
from [6] (though EIG1 was proposed in [7]), and the Network Flow results are
from [8]. All tests require partitions between 45% and 55% of the circuit size.

In the restof this paperwe discussthe basicKLFM algorithm and compare numerous
optimizations to the basic algorithm. This includes methods for clusteringrasidstering
circuits, initial partition creation, and extensions to the standard KLFM inner-loop.

Although the work describedin this paperis applicableto many situations,it has been
biasedby the fact that we are targetingmulti-FPGA systems. One part of this is that the
time it takes to perform the partitioning important,and is thus a primary concernin this
work. In tasks such as ASIC design, we can affordllmv the partitioner to run for hours
or days,sinceit will take weeksto createthe final implementation. In contrast,a multi-
FPGA systemis ready to use secondsafter the mapping has been completed,and users
demand the highest turnaround time possible. Thus, there is signifitargstin using an
efficient partitioning method,suchasKLFM partitioning, asopposedto more brute-force
approachessuch as simulated annealing, which can take multiple hours to complete.
Targeting our partitioning work towards multi-FPGA systemshas several other impacts,
which will be discussed later in this paper.

M ethodol ogy

In our work we have integrated numerousconceptsfrom the bipartitioning literature,
along with somenovel techniquesto determinewhat featuresmake senseto include in an
overall system. We are primarily interestedin Kernighan-Lin, Fiduccia-Mattheysedased
algorithms, though we do include some of the Spectralpartitioning approachesas well.
Note that there is one major omission frénms study: the use of logic replication (i.e., the
duplication of nodes to reduce the cutset). Thigrimarily becauseof uncertaintyin how
to limit the amountof replication allowed in the multi-FPGA partitioning problem. We
leave this aspect to future work.

The best way to perform this comparison would be to try every combination of
techniqgues on a fixed set of circuits, and determine the overall best algorithm.
Unfortunately, we consider such a large number of techniques that the possible

' Optimized KLFM includes recursive connectivity clustering, per-run clustering on gate-level natisasive
unclustering, random initialization, and fixed 3rd-level gains. Each of these techniques is describedtaser in
paper.



combinationsreachinto the thousandsgvenignoring the rangesof numerical parameter
settingsrelevantto someof thesealgorithms. Instead,we use our experiencewith these
algorithms to try and choose the best poss#aiof techniquesand then try insertinginto
this mix eachtechniquethat wasnot chosen. Whereit seemedikely that there would be
some benefit oexamining multiple techniquestogetherand exploiting synergisticeffects,
we also tested those sets of techniques. In the comparisons that follakwaysuseall the
features of the best mix of techniques found except where specifically stated otherwise.

Mapping s38584 | s35932 | s15850 s13207 | s9234 | s5378

Nodes (gates, latches, I0s)|| 22451 19880 11071 9445 6098 3225

Table 2. Sizes of example circuits.

The 6 largestcircuits from the MCNC partitioning benchmarksuite [9] are usedastest
casedor this work (one of the largest,s38417,was not used becauseit was found to be
corruptedat the storagesite). While thesecircuits have the advantageof allowing us to
compare with other existing algorithms, the examples are a bit small for today’s
partitioning tasks (the largest is leggn 25,000 gates)and it is unclearhow representative
they are for bipartitioning.We hope that in the future a standardbenchmarksuite of real
end-usercircuits, with sizesranging up to the hundreds of thousandsof gates,will be
available to the community.

Basic Kernighan-Lin, Fiduccia-M attheyses bipartitioning

One of the best-known,and mostwidely extended,bipartitioning algorithms is that of
Kernighanand Lin [4], especiallythe variantdevelopedby Fiduccia and Mattheyses[5].
Pseudo-codefor the algorithm is given in figure 1. It is an iterative-improvement
algorithm, in that it begins with an initial partition and iterativelpdifies it to improve the
cutsize. Theutsize is the number of netsonnectedto nodesin both partitions,and is the
value to be minimized. The algorithm moves a node at a time, movingpthethat causes
the greatestimprovement,or the least degradation,in the cutsize. If we allowed the
algorithm to move any arbitrary node,could decideto move the node just movedin the
previous iteration, returning tthe previousstate. Thus, the algorithm would be caughtin
an infinite loop, making no improvement. To deal with this, we lock down a afideit is
moved,and nevermove a locked node. The algorithm continuesmoving nodes until no
unlocked node can be moved without violating the size constraints. It is only after the
algorithm has exhausted all possible nodes that it checks whether it has imiheeetset.
It looks back acrossall the intermediatestatessincethe last check, finding the minimum
cutsize. This allows it to climb out of local minima, sinceit is allowed to try out bad
intermediatemoves,hopefully finding a better later state. After it movesback to the best
intermediatestate,it unlocks all nodesand continues. Oncethe algorithm fails to find a
better intermediate state between checks it finishes with the last chosen state.

One important feature of the algorithmttee bucket datastructureusedto find the best
node to move. The data structure has an array of lists, where eantisinsnodesin the
samepartition that causethe samechangeto the cutsetwhen moved. Thus, all nodesin
partition 1 that increasethe cutsetby 5 whenmovedwould be in the samelist. When a
node is moved, all nets connected tari¢ updated. There are four important situationsto
look for: 1) A net that was not in the cutset that riew2) A netthat wasin the cutsetthat
now is not. 3) A net that was firmly in the cutset that is now removable from the cutset. 4)
net that was removable from the cutset that is now finmlthe cutset. A netis “firmly in
the cutset” when it is connected to two nodes, or a locked node, in each pawiliosther
netsin the cutsetare “removable from the cutset”, sincethey are connectedto only one
node in one of the partitions,and that node is unlocked. Thus, the net can be removed



from the cutsetby moving that node. Each of thesefour situationsmeansthat moving a
node connectedto that net may havea different effect on the cutsize now than it would
havehad if it wasmovedin the previousstep. All nodesconnectedto one of thesefour
types of nets are examined and moved to a new list in the bucket data structure if necessary.
Create initial partitioning;
While cutsize is reduced {
Unlock all nodes;
While valid moves exist {
Use bucket data structures to find unlocked node in each partition that most
improves cutsize when moved to other partition;
Move whichever of the two nodes most improves cutsize while not exceeding
partition size bounds;
Lock moved node;

Update nets connected to moved nodes, and nodes connected to these nets;
} endwhile;

Backtrack to the point with minimum cutsize in move series just completed;
} endwhile;
Figure 1. The Fiduccia-Mattheyses variant of the Kernighan-Lin algorithm.

The basic KLFM algorithm can bextendedin many ways. We can chooseto partition
before or after technology-mapping. We can cluster circuit nodes together before
partitioning, both to speedup the algorithm’s run-time, and to give some better local
optimization properties to thELFM’s primarily global viewpoint. We also havea choice
of initial partition creation methods, fromompletelyrandomto more intelligent methods.
The main search loop cdre augmentedwith more complex cost metrics,possibly adding
more lookahead to the choice of nodesrtove. We can unclusterthe circuit and reapply
partitioning, using the previous cut as the initial partitioning of the subsequent murthis
paper,we will considereachof theseissuesin turn, examining not only how the different
approaches to each step compare witle another,but also how they combinetogetherto
form a complete partitioning solution.

Clustering and technology-mapping

One of the most common optimizationsto the KLFM algorithm is clustering, which
groups together nodes in the circuit being partitioned. Nodes grouped together are
removedfrom the circuit, and the clusterstake their place. Netsthat wereconnectedto a
grouped node are instead connectedto the cluster containing that node. Clustering
algorithms are applietb the partitioning problem both to boost performance,and also to
improve quality. The performancegain is due to the fact that since many nodes are
replacedby a single cluster,the circuit to be clusterednow hasfewer nodes,and thus the
problem is simpler. Note that the clusteringtime can be significant, so we usually cluster
the circuit only once, and if several independentruns of the KLFM algorithm are
performed we use the same clusteringdbrruns. The waysin which clusteringimproves
quality are twofold. First of alithe KLFM algorithm is a global algorithm, optimizing for
macroscopic propertiesf the circuit. It may overlook more local, microscopicconcerns.
An intelligent clustering algorithm will often focus on lodaformation, grouping together
a few nodesbasedon local properties. Thus, a smart clustering algorithm can perform
good local optimization,complementingthe global optimization propertiesof the KLFM
algorithm. Second, it has been shown that the KLFM algorithm performs much better when
the nodes in the circuit are connected to at least an average of 6 netqyodeiden circuits
are typically connectedto between2.8 to 3.5 nets[12]. Clustering should in general
increasethe number of nets connectedto each node, and thus improve the KLFM
algorithm. Note that most algorithms (including the best KLFM version we found) will



partition the clustered circuit, and then use this as an initial split for another run of
partitioning, this time on the unclusteredcircuit. Severalvariationson this theme will be
discussed in a later section.

The simplest clustering method is to randomly combine connected nodesdebieere
is not toadd any local optimizationto the KLFM algorithm, but insteadto simply exploit
KLFM's better results when the nodes in the circuit have greater connectvitpaximum
random matching of the circuit graph [13] can be formed by randomly picking pairs of
connectednodes to cluster, and then reclustering as necessaryto form the maximum
number of disjoint pairs. Unfortunately, this is complex and time-consuming, possibly
requiring O(n3) time [14]. We chose to test a simpler algorithm (referred to herangdem
clustering), that should generatesimilar resultswhile being more efficient and easierto
implement. Each node is examinedin random order and clustered with one of its
neighbors(note that a node connectedto a neighborby N netsis N timesas likely to be
clustered withthat neighbor). A node that waspreviously the targetof a clusteringis not
used as a source of a clustering, but an unclustered node can choose to join a gvitlhuping
a node already clustered. Note that with random clusteringa new clustering is generated
for each run of the KLFM algorithm.

Numerousmore intelligent clusteringalgorithmsexist. K-L clustering [15] (not to be
confused with KL, the Kernighan-Lin algorithm) is a method that looks for multiple
independentshort pathsbetweennodes,expectingthat thesenodesshould be placed into
the same partition. Otherwise, each of these paths will have a net in the cutset, degrading the
partition quality. In its most general form, the algorithm requires that two nodes be
connected by independent paths (i.e. paths cannot share any nets), of legtiust|,..1,
respectively, tdoe clusteredtogether. Checkingfor K-L connectednessan be very time-
consuming, especially for longer paths. The biggest problem is high-fanoutvhétk,are
quite common indigital circuits. If we are looking for potential nodesto cluster,and the
sourcenode of the searchis connectedto a clock or resetline, most of the nodesin the
system are potential candidates, and a huge number of paths needhecked. However,
since huge-fanoutnetsare the mostlikely to be cut in any partitioning, we can accelerate
the algorithm byignoring all netswith fanout greaterthan someconstant. Also, if I, = 1,
then the potential cluster-matesare limited to the direct neighbors of a node (though
transitive clustering ipossible,with A & C clusteredtogetherwith B becauseboth A & C
are K-L connected with node B, while A & C are not K-L connectdd).our study of K-L
clusteringwe ignored all netswith fanout greaterthan 10, andusedk = 2,1, = 1, |, = 3.
The values of maximum consideredfanout and |, were chosento give reasonable
computation times. While [15] recommenrkls 3,1, = 1,1, = 3,I; = 3, we havefound that
this yielded few clustering opportunities (this will be discussed later) frdarameterswve
chosegavethe greatestclustering opportunitieswith reasonablerun-time. Using |, = 4
would increase the clustering opportunities, but would also greatly increase run-time.

A much more efficient clustering algorithm, related to K-L clustering, has pe@mnosed
[16] (referredto here asbandwidth clustering). In this method,eachnet e in the circuit
provides a bandwidth of 1&}1) between all nodes connected toaherele| is the number
of nodesor clustersconnectedto that net. All pairs of nodesthat havea total bandwidth
between them of more than 1.0 are clustered. Thus, nodes must be directly connedted by
leasttwo 2-terminal netsto be clustered,or a larger number of higher-fanoutnets. This
clusteringis similar to k-l clusteringwith k= 2,1, = 1,1, = 1, though it requiresgreater
connectivity if the connectingnetshavegreaterthan 2 terminals. Transitive clustering is
allowed,so if the bandwidthbetweenA&C is zero,they may still be clusteredtogether if
A&B and B&C each have a bandwidth of greaterthan 1.0 betweenthem. There is an



additional phase(carried out after all passef recursiveclustering, discussedbelow) that
attempts to balance cluster sizes.

A clustering algorithm similar to bandwidth clustering, but which does not put an
absolute lower bound on the necessary amount of bandwidth betheeandes,and which
also considers the fanout of the nodes involved, has also been testetdadédupon work
done by Schuler and Ulrich [17], with severalmodifications. We will refer to it as
connectivity clustering. Like random clustering, each nodeexaminedin a random order
and clustered with one of its neighbors. alhode hasalready beenclusteredit will not be
the source of a new clustering attempt, though a node can choose to group with a
previously formed cluster. Nodes are combined with the neighbor with which theyheve
greatestconnectivity. Connectivity is defined in equation 1. Bandwidth; is the total
bandwidthbetweenthe nodes(as defined in bandwidthclustering),whereeach n-terminal
net contributes1/(n-1) bandwidth betweeneach pair of nodesto which it is connected.
Fanout; is the number of nets nodés connected to. In this methawdesare more likely
to be clustered if they are connected by many netsbghewidth; in the numerator), ithe
nodes are small (th&zg & size in the denominator),and if mostof the nodes’ bandwidth
is only between those twaodes(the fanout; - bandwidth; & fanout; - bandwidth; termsin
the denominator). While most of these goals seem intuitively correctustering,the size
limits is to avoid large nodes(or subsequentarge clustersin recursiveclustering, defined
below) attractingall neighborsinto a single huge cluster. Allowing larger nodesto form
huge clusters early in the clustering will adversely affect the circuit partitioning.
bandwidith;

size, (i ze; { fanout; — bandwidithy ){ fanout; ~ bandwidith, )

While all the clustering techniquesdescribedso far have been bottom-up, using local
characteristicto determinewhich nodes should be clusteredtogether, it is possible to
perform top-down clusteringaswell. A method proposedby Yeh, Cheng,and Lin [18]
(referred to here ashortest-path clustering) iteratively appliesa partitioning methodto the
circuit until all pieces are small enough to be considetasdters. At eachstepit considers
an individual group at a time, where a group contains all nodes that have always been on the
sameside of the cutsin all prior partitionings. The algorithm then iteratively choosesa
random source and sink node, finds the shortest path between those nodes, and increases the
flow on these edges by 0.1. The flow is a number used in computing net lesigénethe
current net length isxp(10*flow). Before each partitioning, all flows are set to zero. When
the flow on a net reachesl.O, the netis part of the cutset. Once there is no uncut path
between the random pairs of nodes chosen in the current iterdigalgorithm is finished
with the current partitioning. In this way, the algorithm proceedsby performing a large
number of 2-terminal net routings on the circuit graph, with random sourceand sink for
eachroute, until it exhaustshe resourcedn the system. Note that the original algorithm
limits the number of subpartitionsof any one group. Sincethis is not an importantissue
for our purposesit wasnot included in our implementation. There are severalalterations
that can be madeto this algorithm to boost performance,details of which can be found
elsewhere [19]. Once the algorithm splits up a group into subpartitions, the sizesefthe
groups arecheckedto determineif they should be further subdivided. For our purposes,
the maximum allowable cluster size is equal to (total circuit size)/100,which is half the
maximum partition size variation.

Before describingthe last clusteringmethod,it is necessaryto discusshow to calculate
the size of alogic node in the circuit being clustered. For our application (multi-FPGA
systems)we are targeting FPGAs such as the Xilinx 3000 series[20], where all logic is

connectivity; =

(1)




implementedby lookup-tables(LUTs). A LUT is a logic block that can implement any
function of N variableswhereN is typically 4 or 5. Sincewe will be partitioning circuits
before technology-mapping (the reasons thus will be discussedater), we cannotsimply
count the number of LUTs used, sinseveralof the gatesin the circuit may be combined
into a single LUT. An importantissuewith a LUT-basedimplementationis that we can
combine an M-input function with a P-input function that generatene of the M inputs
into an M+P-1)-input function. The reasonthat it is an (M+P-1)-input function, and not
an M+P)-input function, is that the output of tieinput function no longer needs to be an
input of the function since it isomputedinsidethe LUT. A 1-input function (inverter or
buffer) requires no extra inputs on a LUNWe canthereforesay a logic node of P inputs
usesup P-1 inputs of a LUT, and thus the size of a P-input function is (P-1), with a
minimum size of 0. Any I/O nodes (i.e. external inputs and outputs) have a dastTdfis
is because if size keeps an I/O node oua pfrtition in which it hasneighbors(i.e., nodes
connectedto the samenet asthe I/O node), a new I/O mustbe addedto each partition to
communicate the signal across the cut. Thus, moving andf® to a partition in which it
has a neighbor never uses extra logic capacity. Although latches stisallthve a size of
0, since most FPGAs have more than sufficiatth resourcesfor simplicity we treatthem
identically to combinational logic nodes.

Mapping Random K-L Bandwidth | Connectivity | Shortest-Path] No Presweep
$38584 177 88 112 57 50 59
$35932 73 86 277 47 45 70
515850 70 90 124 60 59 65
513207 109 94 87 73 72 79
59234 63 79 56 52 51 65
s5378 84 78 88 68 67 66

Mean 89.7 85.6 108.7 58.8 56.5 67.1

Table 3a. Quality comparison of clustering methods. Values are minimum
cutsizes for ten runs using the specified clustering algorithm, plus the best

KLFM partitioning and unclustering techniques. Source mappings are not

technology-mapped. The “No Presweep” column is connectivity clustering

applied without first presweeping. All other columns include presweeping.
Mapping Random K-L Bandwidth | Connectivity | Shortest-Patf No Presweep
38584 2157 2041 2631 1981 4715 2183
35932 3014 1247 2123 2100 3252 2114
515850 780 500 871 643 1354 713
s13207 648 428 629 549 1279 696
$9234 326 266 460 333 669 416
s5378 120 147 223 181 447 189
Mean 710.4 526.5 824.4 667.6 1412.5 751.5

Table 3b. Performance comparison of clustering methods. Values are total
CPU seconds on a SPARC-IPX for ten runs using the specified algorithm, plus
the best KLFM partitioning and unclustering techniques.

The last clustering techniquewe explored is not a complete clustering solution, but
insteada preprocessofcalled presweeping) that can be used before any other clustering
approach. The idea is that there are some nodes that should always be in the same partition.
Specifically, oneof thesenodeshasa size of zero,and that node can alwaysbe movedto
the other node’s partition without increasing the size. The mostobvious caseis an I/O
node from the original circuit which is connected to some other Nod€&his I/O node will
have a size of zero, a fanout of one, and moving the 1/0O node toN®ghartition can only
decrease the cut size (the cut sizay not actually decreasesince anothernode connected



to the net betweenN and the I/O node may still be in that other partition). Another
situationis a node R, with a fanout of two, which is connectedto somenode S by a 2-
terminal net. Again, node R will havea size of zero, and can be moved to S's partition
without increasing the cutsize. The presweeping algorithm goes through the loiodirtg
for such situations, and clusters together the involved ndtl&sS, or N andthe I/O node).
Note that presweepingcan be very beneficialto some clustering algorithms, such as K-L
and Bandwidth, since such algorithms may be unable to cluster the pairs found by
presweeping. For example, an I/O node with a fanownefwill neverbe clusteredby the
K-L clustering algorithm. Since the presweeping clustering should never hurt a
partitioning, presweeping will always be performed in this study unless otherwise stated.

Resultsfor the various clustering algorithms are presentedin tables3a and 3b. The
shortest-pathclustering algorithm generateshe best results, with connectivity clustering
performing only about4% worse. In terms of performance,the shortest-pathalgorithm
takesmore than twice as long as the connectivity clustering algorithm. This is because
clustering with the shortest-pathalgorithm takes more than 15 times as long as the
connectivity approach. Shortest-pathclustering would thus be even worse comparedto
connectivity clusteringif the partitioner does not share clustering betweenruns, which is
sometimes a good ideaBecauseof this significantincreasein run-time, with only a small
increase in quality, we use the connectivity algorithm foioalbur other comparisons. We
can also see that presweepingis a good idea, since connectivity clustering without
presweeping does about 14% worse in cutsize, while taking about 13% longer.

One surprising result is that K-L clustering does only slightly better than random
clustering, and Bandwidth clustering actually does considenabhge. The reasonfor this
is that these clustering algorithms seem to require technology-mapping, and the
comparisonsn the tablesare for non-technology-mappedircuits. Technology-mapping
for Xilinx FPGAsis the processof grouping togetherlogic nodesto bestfill a CLB (an
element capable of implementing any 5-input functionfwar 4-input functions). Thus, it
combinesseveralbasic gatesinto a single CLB. The reasonthat K-L and Bandwidth
clustering perform poorly on non-technology-mappgédte-level)circuits is that there are
very few clustering opportunities for these algorithms. Imagine a sum-of-products
implementationof a circuit. In general,any specific AND gate in the circuit will be
connected to two or three input signhalsd some OR gates. Any AND gatesconnectedto
several of the same inputs will in general be replaced single AND gate. The OR gates
are connectedto other AND gates,but will almostnever be connectedto the sameAND
gate twice. The onpossibility, an OR gate connectedto an AND gate’s output aswell as
producing one of that AND gate’s inputs, is a combinational cycle, and usually not allowed.
Thus, there will bealmostno possibility of finding clusterswith Bandwidth clustering,and
few K-L clustering opportunities. While many gate-level circuits will noslmple sum-of-
products circuits, we have found that there are still Yewy clusteringopportunitiesfor the
K-L and Bandwidth algorithms.

Unfortunately, it turnsout that technology-mappingoefore partitioning is an extremely
poor idea. In table 4, columns 2 through 4 shows results for applying the various clustering
algorithmsto the Xilinx 3000 technology-mappedrersionsof the files being tested(note
that only four of the examples are used, because the other examples werensmgh that
the size of a single CLB waslarger than the allowed partition size variation). Column 5
("“No Tech Map™) has the results for connectivity clustering on gate-level (non-
technology-mapped) circuits.  The results show that technology-mapping before
partitioning almost doublethe cutsize. The K-L and Bandwidthclusteringalgorithmsdo
perform almost as well as the connectivity clustering algorithm for these circuits, but



obviously we are much better off simply partitioning the gate-levelcircuits. This hasan
addedbenefit of speedingup technology-mappingaswell, since we can technology-map
each of the partitions parallel. Note that we may increasethe logic size by partitioning
before technology-mapping, because there are fewer groufondbe technology-mapper
to consider. However,in many technologies(especiallymulti-FPGA systems)}he amount
of logic that can be fit on the chip is constrainedmuch more by the number of 1/O pins
than on the logic size,and thus decreasinghe cutsizeby a factor of two is worth a small
increase in logic size. This increase in logic sizkkely to be fairly small since gatesthat
technology-mappings likely to group togetherinto a single CLB sharesignals,and are
thus likely to be placed into the same partition by the partitioner.

Mapping K-L Bandwidth Connectivity No Tech Map Unclusterable
s38584 169 159 120 57 60
35932 155 157 143 47 53
515850 86 90 87 60 60
13207 118 119 116 73 72
Mean 127.7 127.9 114.7 58.5 60.9

Table 4. Quality comparison of clustering methods on technology-mapped

circuits. Values are minimum cutsizes for ten runs using the specified
algorithm. The values in the column marked “Unclusterable” are the results of
applying Connectivity clustering to technology-mapped files, but allowing the
algorithm to uncluster the clusterings formed by the technology-mapping.

Note that only the four largest circuits are used, because technology-mapping

for the others causes clusters to exceed allowed partition size variation.

It is fairly surprising that technology-mapping has such a negative effepartitioning.
There are two possible explanations:1) technology-mappingproduces circuits that are
somehowhard for the KLFM algorithm to partition or 2) technology-mappingcreates
circuits with much higher minimum cutsizes. There is evidencethat the secondreasonis
the underlying cause, that technology-mapped circuits siro@hnotbe partitioned aswell
asgate-levelcircuits, and that it is not simply due to a poor partitioning algorithm. To
demonstratehis, we usethe fact that the technology-mappedircuits for the Xilinx 3000
series we are using contain information on what gates are clustered together to form a single
CLB. This allows us to consider thechnology-mappingnot asa permanentrestructuring
of the circuit, but instead simply as another clustering preprocessor. That is, we alokved
algorithm to partition the circuit with the technology-mappedfiles, with connectivity
clustering applied on top of that, then uncluster down to the basic gyadgsartition again.

The results are shown in the final column of table 4. Although the results for this technique
are slightly worse than pure Connectivity clustering, it is still much better than the
permanentlytechnology-mappedrersions. The small example circuit (s27), as shownin

figure 2, demonstrateshe problemstechnology-mappingcan cause. Thereis a balanced
partitioning of the circuit with a cutsizeof 2, as shownin gray at left. However, after
technology-mapping (CLBs are shovay gray loops), the only balancedpartitioning puts

the smaller CLBs in one partition, the larger CLB on the other. This split has a cutsize of 5.

The effects of technology mapping on cutsize have been examined previously by
Weinmann [21], who determined that technology-mapgieépre partitioning is actually a
good idea, primarily for performance reasortidowever,in his study he usedonly a basic
implementation of Kernighan-Lin (apparently not even the Fiduccia-Mattheyses
optimizations were applied), thus generating cutsizessignificantly larger than what our
algorithm produceswith much slower performance. Thus, the benefits of any form of
clustering would help the algorithm, making the clustering provided by technology-



mapping competitive. However,eventheseresultsreport a 6% improvementin arithmetic
mean cutsize for partitioningefore technology-mappingand the differencein geometric
mean is actually 19%

Figure 2. Example of the impact of technology-mapping on partitioning
quality. The circuit s27 is shown (clock, reset lines, and /O pins are omitted).
At left is a balanced partition of the unmapped logic, which has a cutsize of 2.
Gray loops at right indicate logic grouped together during technology-
mapping. The only balanced partitioning has the largest group in one
partition, the other two in the other partition, yielding a cutsize of 5.

Unclustering

When we use clustering to improve partitioning, we will usually partition the circuit,
uncluster it,and partition again. There are severalwaysto uncluster. Most obviously, we
can either choose not to uncluster at afi (inclustering), or we can completely removeall
clusteringin one step (complete unclustering). However, it turns out there are better
alternatives. The important observation is that whilesteringwe can build a hierarchy of
clustersby recursivelyapplying a clustering method, and then unclusterit in a way that
exploits this hierarchy. In recursive clustering, after the circuit is initially clusteredwe
reapply the clustering algorithm again upon the already clustered circuit. Clusters are never
allowedto grow larger than half the allowed partition size variation. Recursiveclustering
continues until no more clusters can be form&tde rememberwhat clustersare formed at
each step, with clusters formed in title pass forming thé&h level of a clustering hierarchy.

There are two ways to take advantage of the clustering hierarchy formed during recursive
clustering. The mostobvious methodis that after partitioning completes(that is, when a
complete pass of moving nodes fails to find any state betéerthe resultsof the previous
pass)we removethe highestlevel of the clusteringhierarchy,leaving all clusteringsat the
lower levels alone, andontinue partitioning. That is, subclustersof clustersat the highest
level, as well as those clustersthat were not reclusteredin the highestlevel, will remain
clustered for the next pass. This processeatsuntil all levelsof the clusteringhavebeen
removed(note that clusteringperformedby presweepings never removed,since there is
nothing to be gained bgoing so). In this way, the algorithm performsvery coarse-grain
optimization during early passes, vdige grain optimization during late passesaswell as
medium-grain optimizatiorduring the middle passes. This algorithm, which we will refer
to here asterative unclustering, is based on work by Cong and Smith [22].

An alternative to iterativeinclusteringis edge unclustering. This techniqueis basedon
the observationthat at any given point in the partitioning thereis likely to be some fine-
grained,localized optimization,and somecoarse-grainedglobal optimization that should
be done. Specifically,thosenodesthat are very close to the current cut should be very

% Throughoutthis paperwe usegeometricinsteadof arithmetic meansbecausewe believe improvementsto

partitioning algorithms will result in some percentage decrease in each cutsize, not a defcseaseconstant
number of nets irall examples. Thatis, it is likely that animproved algorithm would reducecutsizesfor all

circuits by 10%, and would not reducecutsizesby 10 nets in both large and small examples. Thus, the
geometric mean is more appropriate.



carefully optimized, while nodesfar from the cut need much less detailed examination.
The edge unclustering algorithm is similar to iterative unclustering in that it keeps
unclusteringthe highest levels of clustering remaining in betweenruns of the KLFM

partitioning algorithm. However,insteadof removing all clustersat a given level, it only
removes clusters that are adjacent todbe(i.e., thoseclustersconnectedto edgesthat are
in the cutset). In this way, we will end up eventually unclustering all clusters nthé tuit,
while other clusters may remain together. Wileere are no more clustersleft adjacentto

the cut, we completely uncluster the circuit and partition with KLFM.

Single-level Clustering Recursive Clustering
Mapping | No Uncluster| Complete | No Uncluster] Complete Iterative Edge
Uncluster Uncluster Uncluster Uncluster
s38584 95 77 167 88 57 56
35932 157 156 90 75 47 46
$15850 77 67 123 84 60 62
13207 101 79 119 89 73 72
9234 68 61 105 54 52 58
s5378 79 68 125 70 68 68
Mean 92.4 80.1 119.3 75.6 58.8 59.7

Table 5a. Quality comparison of unclustering methods. Values are minimum
cutsizes for ten runs using the  specified algorithm. Source mappings are not

technology-mapped, and are clustered by presweeping and connectivity
clustering.
Single-level Clustering Recursive Clustering
Mapping | No Unclusterf Complete | No Unclustey Complete Iterative Edge
Uncluster Uncluster Uncluster Uncluster
s$38584 1220 1709 1104 1784 1981 2023
35932 1224 1664 1359 1798 2100 2127
$15850 380 491 301 485 643 646
s$13207 375 525 282 429 549 572
s9234 219 283 145 262 333 335
s5378 104 144 82 132 181 162
Mean 411.4 557 338.9 533.6 667.6 664.8

Table 5b. Performance comparison of unclustering methods. Values are run
times on a SPARC-IPX for ten runs using the specified algorithm.

As the resultsin tables5a and 5b show, using recursiveclustering and a hierarchical
unclusteringmethod (iterative or edge unclustering) has a significant advantage. The
methodsthat do not unclusterare significantly worsethan all other approacheshy up to
more than a factor afwo. Using only a single clusteringpassplus completeunclustering
yields a cutsize 36% larger than the best unclustering (iterative), and even complete
unclustering of a recursively clustered mapping yields a 29% larger cutsizediffdrence
betweenthe two hierarchical unclustering methodsis only 1.5%, with three mappings
having smaller cutsizeswith edge unclustering,and two mappings having smaller cutsizes
with iterative unclustering. Thus, it appears ttiet difference betweenthe two approaches
is slight enoughto be well within the marginsof error of this survey, with no conclusive
winner. In this survey, we use iterative unclustering except where explicitly stated otherwise.

Initial partition creation
KLFM is an iterative-improvement algorithm that gives no guidamednow to construct

the initial partitioning that is to be improved. As one might expthele are many waysto
construct this initial partitioning, and the method chosen has an impact on the results.



The simplestmethod for generatingan initial partition is to just randomly createone
(random initialization) by randomly ordering the clustersin the circuit (initial partition
creationtakesplace after clustering),and then finding the point in this ordering that best
balances the total cluster sizes before and after this point. All nodes befgpeittiiare in
one partition, and all nodes after this point are in the other partition.

Mapping Random Seeded Breadth-first Depth-first
38584 57 57 57 56
535932 47 47 47 47
515850 60 60 60 60
513207 73 75 80 74
s9234 52 68 52 52
s5378 68 79 80 78
Mean 58.8 63.4 61.4 60.2
Table 6a. Quality comparison of initial partition creation methods. Values are
minimum cutsizes for ten runs using the specified algorithm.
Mapping Random Seeded Breadth-first Depth-first
38584 1981 1876 1902 2033
$35932 2100 2053 2090 2071
515850 643 604 613 584
13207 549 531 561 533
59234 333 302 319 325
s5378 181 186 177 173
Mean 667.6 641.0 652.5 647.5

Table 6b. Performance comparison of initial partition creation methods.
Values are total CPU seconds on a SPARC-IPX for ten runs wusing the
specified algorithm.

An alternative to this iseeded initialization, which is basedon work by Wei and Cheng
[23]. The ideais to allow the KLFM algorithm to do all the work of finding the initial
partitioning. It randomly chooses one cluster to put into one partition, and all other clusters
are placedinto the other partition. The standardKLFM algorithm is then run with the
following alterations: 1) partitions are allowed to be outside the required size bounds,
though clusterscan not be movedto a partition that is too large,and 2) at the end of the
pass,it acceptsany partition within size bounds insteadof a partition outside of the size
bounds. Thus, the KLFM algorithm should move clustersrelatedto the initial “seed”
cluster over to the small partition, thus making all nodes that end up in the initaliyster
partition much more related to one-another than a randomly generated partitioning.

We can also generatean initial partitioning that hasone tightly connectedpartition by
breadth-first initialization. This algorithm starts witla single node in one of the partitions
and performs a breadth-first search from the initial node, insealingpdesfound into the
seed node’s partition. Once the sgedtition growsto contain ascloseto half the overall
circuit size aspossiblethe restof the nodesare placedinto the other partition. To avoid
searchinghuge-fanout nets such as clocks and reset lines, which would create a very
unrelatedpartition, netsconnectedto more that 10 clustersare not searched. Depth-first
initialization can be defined similarly, but should produce much less related partitions.

Results for thesanitial partition constructiontechniquesare shownin tables6a and 6b.
The data shows that random is actually llestinitialization technique,followed by depth-
first search. The “more intelligent” approaches of seeded and breadth-first do 7486and
worsethan random, respectively,and the differences occur only for the three smaller
mappings. There are threereasondfor this. First of all, recursiveclustering and iterative
unclustering seem to be able to handle the lacgeuits well, regardlessof how the circuit



is initialized. With larger circuits there are more levels of hierarchy and the algorithms
consistentlyget the sameresults. For smallermappingsthere are fewer levels and much
greater variancén results. Sincethere are many potential cuts that might be found when
partitioning smaller circuits, getting the greatestvariancein the starting point will allow
greater variety in results, armktter valueswill be found (aswill worse,but we only accept
the best value of ten runs). Thus, the m@edom starting points perform better (random
and depth-first initialization). Also, the more random thigal partitioning, the easierit is
for the partitionerto move awayfrom the initial partitioning. Thus,the partitioneris not
trapped in a potentially poor partitioning, and can generate better results.

Mapping Random EIG1 EIG1-IG IG-Match All Spectral

s38584 57 57 57 57 57

$35932 47 47 47 47 47

s15850 60 60 96 96 60

s13207 73 111 82 82 82

s9234 52 54 54 n/a 54

s5378 68 78 78 n/a 78

Mean 58.8 65.0 66.8 n/a 61.8
Table 7a. Quality comparison of Spectral initial partition creation methods. IG-
Match [24], EIG1 and EIG-IG [7] are spectral partitioning algorithms, used here
to generate initial partitions. Entries labeled “n/a” are situations where the

algorithm failed to find a partitioning within the required partition size bounds.
Some of the spectral algorithms may move several clusters from one side of
the cut to the other at once, missing the required size bounds (required only
for our purposes, not for the ratio-cut metric for which they were designed).
“All Spectral” is the best results from all three spectral algorithms.

Mapping Random EIG1 EIG1-IG IG-Match All Spectral

$38584 1981 336 445 1207 1988

$35932 2100 444 463 540 1447

515850 643 89 102 206 397

513207 549 79 95 152 326

s9234 333 42 56 n/a 98*

s5378 181 26 39 n/a 65*

Mean 667.6 102.3 127.8 n/a 365.2*
Table 7b. Performance comparison of Spectral initial partition creation
methods. Values are total CPU seconds on a SPARC-IPX for the clustering,

initialization, and partitioning algorithms combined. Values marked with “ ** do

not include the time for the failed |IG-Match runs.

While the previous discussionof initial partition generationhas focused on simple
algorithms, we can in fact use more complex, complete partitioning algorithms to find
initial partitions. Specifically, there exists a large amount of work on “spectral”
partitioning methods (as well as others) that construgtartitioning from scratch. We will
considerherethe IG-Match [24], EIG1 and EIG-IG [7] spectralpartitioning algorithms.
Details of these approaches are beyond the scope gfdpier. One important note is that
thesealgorithmsare designedto optimize for the ratio-cut objective[23], which does not
necessarilygeneratebalancedpartitions. However,we obtained the programs from the
authors and altered them to generate only partitions with sizes between 49% andtb&% of
complete circuitsize,the sameallowed partition size variation usedthroughoutthis paper.
These algorithmsvere appliedto clusteredcircuits to generateinitial partitionings. These
initial partitionings were then used by our KLFM partitioning algorithm.



As the results show, the algorithms (when taken as a group, under “All  Spectral”)
produce fairly good results, but are sl worsethan the random initialization approach.
They do havethe advantageof fasterrun times (including the time to perform Spectral
Initialization onthe clusteredcircuits), sincethey do not require,and cannotuse,multiple
partitioning runs. Howeverthe KLFM algorithm can be run fewer times, meeting the
Spectral performance, while getting better quality results.

Higher-level gains

The basic KLFM algorithm evaluatesde movespurely on how the move immediately
affects the cutsize. However,there are often severalpossible movesthat have the same
effect on the cutsize, but these moves may have very different ramificatiolagefomoves.
Take for example the circuit in figure 3 left. If we move eitBesr E to the other partition,
the cutsize remains the samilowever,by choosingto move B, we can reducethe cutsize
by one by then moving A to the other partition. If we move E, it will take two further
moves C andD) to remove the newly cut three-terminal net from the cutsettta@advould
still keep the cutsize at 2 because of the edge ftatm the rest of the logic.

(6)
™
oY

Figure 3. Examples for higher-level gains discussion.

To deal with this problem, and give the KLFM algorithm some lookahead ability,
Krishnamurthy proposedhigher-level gains [25]. As in the standardKLFM algorithm, a
net that is not in theutsetcontributesan immediate(first-level) increaseof 1 (gain of -1)
in cutsize ifany of the nodesconnectedto it move to anotherpartition. The extensionis
that if a net hasn unlocked nodesin a partition, and no locked nodesin that partition, it
contributesan nth-level gain of 1 to moving a node from that partition. Moves are
compared based on the lowest-order gain in which they differ. r@mawith gains(-1, 1,
0) (1st-level gain of -1, 2nd-level of 1, 3rd-level of 0) woulddstterto move than a node
of (-1, 0, 2), but worse to move than a node of (0Q)0, To illustrate the gain computation
better,we give the examplesin figure 3 right. Net 123 is currently cut, so thereis no
negative gain for moving nodes connected to this net. There is only one unioukedn
this net in the left partition, and no locked nodes, so there is a 1st-level gain of 1 for moving
nodel. There are two unlocked and tarked nodeson net 123 in the right partition, so
there is a 2nd-level gaifor moving nodes2 or 3. Note thatif either2 or 3 werelocked,
there would be no 2nd-level gain for this net, since there iwayto removeall connected
nodes from the right partition. N@b is not currently cut, so thereis a first-order gain of
-1 for moving a node on this net the partition on the right. 45 hastwo unlocked nodes
in the left partition, so there is a 2nd-order gain of 1 for making the same mov&78\et
similar to45, except that it has a 3rd-order, not a 2nd-order, gain of 1.w&oan rank the
nodes (frombestto move to worst) as1, 23, 45, 678, wherenodesgroupedtogetherhave
the same gains. If we do motsdirst, 1 would now be locked into the other partition, and
nodes2 and 3 would havea 1st-levelgain of -1, and no other gains. Thus, they would
become the worst nodes to move, and nbde5 would be the next candidate.

Note that the definition of nth-level gains given above is slightly different that
Krishnamurthy’s. Specifically,in Krishnamurthy’s definition the rule that gives an nth-
level gain to a net witin unlocked nodes in a partition is restricted to ribt are currently



in the cutset. Thus, ne&§8 and45 would both have gains (-1, 0). However,aswe have
seen, allowing nth-level gains for nets nottlie cutsetallows us to seethat moving a node
on 45 is betterthan moving a node on 678, sinceit is easierto then remove45 from the
cutset than it is 678. Also, this definition handles 1-terminal nets naturally, while
Krishnamurthyrequiresno 1-terminal netsto be presentin the circuit. A 1-terminal net
with our definitions would havea 1st-levelgain of -1 becauséit is not in the cutset,but a
1st-level gain of 1 for having only 1 nodie a given partition, yielding an overall 1st-level
gain of 0. Note that 1-terminal nets are common in clusteredcircuits, when all nodes
connected to a net are clustered together.

Fixed

Mapping Dynamic 1 2 3 4 20

38584 57 57 57 57 57 57

535932 49 47 49 47 47 47

515850 60 64 62 60 60 60

513207 75 77 77 73 73 73

s9234 52 56 52 52 52 52

s5378 66 71 70 68 68 68

Mean 59.2 61.2 60.4 58.8 58.8 58.8
Table 8a. Quality comparison of higher-level gains. Numbers in column
headings are the highest higher-level gains considered. Note that a fixed

gain-level of 1 is identical to KLFM without higher-level gains. Values are
minimum cutsizes for ten runs using the specified algorithm.

Fixed
Mapping Dynamic 1 2 3 4 20
538584 1904 1606 1652 1981 2078 3910
535932 2321 1830 1862 2100 2297 2766
515850 630 509 518 643 678 956
13207 551 425 446 549 572 815
$9234 338 252 250 333 355 466
s5378 186 130 134 181 185 241
Mean 677.2 524.5 536.4 667.6 703.8 990.8

Table 8b. Performance comparison of higher-level gains. Values are total CPU
seconds on a SPARC-IPX for ten runs using the specified algorithm.

There is aradditional problem with using higher-levelgainson clusteredcircuits: huge
runtimes. The KLFM partitioning algorithm maintains a bucket for all nodes thédtsame
gains in each partition. Thus, if the highest-fanoutnode has a fanout of N, in KLFM
without higher-levelgainsthere mustbe 2*N+1 bucketsper partition (the N-fanout node
can have a total gain betweeN &nd N). If we useM-level gains (i.e. consider higher-level
gains between1st-level and Mth-level inclusive), we would require (2*N+1)M different
buckets. In unclustered circuits this is fine, since nodes will have a fanout of at o6&t 5
Unfortunately, clustered circuits can have nodes with fanout on the order of hundreds. This
causesnot only a storageproblem, but also a performance problem, since the KLFM
algorithm will often have to perform a linear searchof all buckets of gains between
occupied buckets, and buckets will tend todparselyfilled. We havefound two different
techniques for handling these problems. First ofth#,runtimesare acceptableaslong as
the number of buckets is reasonable (perhafesvahousand). So, given a specificbound
N on the largest-fanoutnode (which is fixed after every clusteringand unclusteringstep),
we can seM to the largestvalue that requireslessthan a thousandbucketsbe maintained.
This value is recalculated after every unclustering step, allowstg usea greaternumber
of higher-level gains as the remaining cluster sizesget smaller. We call this technique



dynamic gain-levels. An alternativeto this is to exploit the sparsenature of the occupied
gain buckets. That is, among nodes with the same 1st- and 2nd-level gains, there will be few
different occupied gain buckets. What we can do is perform the dynamic gain-level
computationto determinethe number of array locationsto use, but eachof thesearray
locations is actually a sorted list of occupied buckets. That is, once the dynamic
computation yields a giveM, all occupied gain buckets withhe samefirst M gainswill be
placed in the list in the same array location. In this way, circuits with large clusters, and thus
very sparse usagef the possiblegain levels,haveonly 2 or 3 gain-levelsdeterminingthe
array location, while circuits with small or no clusters,and thus more denseusageof the
smaller possible gain locations, have more of their gain orders determining the array
locations. In this latter technique,called fixed gain-levels, the user can specify how many
gain-levelsthe algorithm should consider,and the algorithm automatically adaptsits data
structures to the current cluster sizes.

As shown in tables 8a and 8b, using mgeén levelsimprovesthe quality of the results,
but only to a point. Once we consider gains up to the 3rd level, we get all the benefits of
to at least20 gain levels. Thus, extra gain levelsbeyond the 3rd only serveto slow down
the algorithm, up to a factor of 50% or more. Dynamic gain-levels produce rbstitsen
thoseof 2nd-leveland 3rd-level fixed gains. This is becauseat high clusteringlevels the
dynamic algorithm usesonly 2 gain levels, though once the circuit is almost totally
unclustered it uses several more gain-levels. In this survey we use fixed, 3-level gains.

Partition maximum size variation

Variation in the allowed partition size can have a significant impact on partitioning
quality. In partitioning, we put limits on the sizesof the partitions so that the partitioner
cannotplace most of the nodesinto a single partition. Allowing all nodesinto a single
partition obviously defeatsthe purposeof partitioning in most casessincewe are usually
trying to divide the problem into manageable pieces. Vdr&ancein partition size defines
the range ofsizesallowed, such as between45% and 55% of the entire circuit. Thereare
two incentivesto allow asmuch variancein the partition sizesas possible. First of all, the
larger the allowable variation, thigeaterthe number of possiblepartitionings. With more
possible partitionings, it is likely that there will be better partitionings available, and
hopefully the partitioner will generate smaller cutsizes. The second isthat there needs
to be enoughvariancein partition sizesto let eachnode move betweenpartitions. If the
minimum partition size plus the size of a langede is greaterthan the maximum partition
size then this node can never be moved. This will artificially constrain the placembig of
node to the node’s initial partition assignmentwhich is often a poor choice. While we
might expect that the size of the nodes in the graph being partitioned will be smahuand
not require a large variation in partiticees,we will usually clustertogethernodesbefore
partitioning, greatly increasingthe maximum node size. A smaller partition variation will
limit the maximum clustersize,limiting the effectivenessof clustering optimizations. In
general,we will require that the maximum cluster size be at most half the size of the
allowablevariation in partition sizes. In this way, if we have maximum-sizedclustersas
move candidates from both partitions, at least one of them will be able to move.

Conflicting with the desire to allovms much variation in partition sizesas possibleis the
fact thatthe larger the variation, the greaterthe wastageof logic resourcesn a multi-chip
implementation,particularly a multi-FPGA system. Specifically, when we partition to a
system of 32 FPGAs, we iteratively apply our bipartition&dgorithm. We split the overall
circuit in half, then split each of these partitianshalf, and so on until we generatea total
of 32 subpartitions.Now, considerallowing partition sizesto vary between40% and 60%



of the logic being split. On average, it is likely that better partitions exist at points where the
partition sizesare most unbalancedsince with the leastamount of logic in one partition
there is the least chance that a net is connected to one of those nodes, &#meldhisszeis
likely to be smaller. Thisneansthat many of the cuts performedmay yield one partition
containing nearly 60% of the nodemd the other containing closeto 40%. Thus, after 5
levels of partitioning, there will probably be one partition containing .6°> = .078 of the
logic. Now, an FPGA hasa fixed amountof logic capacity,and sincewe needto ensure
that each partition fits into an individual FPGA, all FPGAs must be able tothatdamount
of logic. Thus, for a mapping of size N, we need a total FPGA logic capacity of
32*(.078*N) = 2.488W, yielding a wastage ofbout60%. In contrast,if we restricteach
partition to between49% and 51%, the maximum subpartition sizeis .515 = .035, the
requiredtotal FPGA logic capacityis 1.104*N, and the wastageis about 10%. This is a
much more reasonableoverheadand we will thus restrictthe partition sizesconsideredin
this paper to between 49%-51% of the total logic sikiate that by a similar argumentwe
can showthat partitioning algorithmsthat lack strong control over partition sizes,such as
ratio-cut algorithms [23], are unsuitable for our purposes.

Overall comparison

While throughout this paper we have discussedhow individual techniguesimpact an
overall partitioning algorithm, it is natural to wonder which of thesetechniquesis most
important, and how much of the cutsize improvement istdueny specific technique. We
have tried to answer this question in two ways. Fkifsall, we can take the comparisonswe
have madethroughoutthis paper,and bring them togetherinto a single graph (figure 4
right). Herewe showthe difference betweenthe cutsizesgeneratedby our bestalgorithm
and the cutsizes generated with the same algorithm, except the sptmifiatuehasbeen
replaced with the worst alternative considered in this paper. For example, the “Connectivity
Clustering” line is the difference betweenour best algorithm, which uses Connectivity
clustering,and the bestalgorithm with Bandwidth clustering used instead. Note that the
alternative usedor iterative unclusteringis completeclustering,not no unclustering,since
complete unclustering is a very commonly used technique when any clustering is applied.

Our secondcomparisonwasmade by startingwith an algorithm using the worst choice
for eachof the techniques,and then iteratively adding whicheverof the besttechniques
gives the greatest improvement in cutsize. Specifically, we ran the worst algorithm, and then
ran it several more times, this timath eachof the besttechniquessubstitutedindividually
into the mix. Whichevertechniquereducedthe overall cutsizethe most was insertedinto
the algorithm. We then tried running this algorithm multiple times, with both that best
technique inserted, as well as each of the other techniques (one at aTimeprocesswas
repeateduntil all techniqueswereinserted. The resulting cutsizesand the techniquethat
wasaddedto achievetheseimprovements,are shownin figure 4 left. The initial, worst
algorithm used was basic KLFM with seeded initialization and technology-mapped files.

As we can see from the graphsin figure 4, the results are mixed. Both of the
comparisons show that connectivity clustering, recursive clustering, and iterative
unclustering have a significant impact, presweepingahasdestimpact, and both random
initialization and higher-level gains cause only a small improvement. The resaltsixed
on technology-mappingwith the left comparisonindicating only a small improvement,
while the right comparison indicates a decrease in cutsize of almost a factor of two.

The graphs in figure 4 give the illusion that we ganpoint which individual techniques
are responsible for what portiaf the improvementsin cutsizes. However,it appearsthat
cutsize decreases are most likely doere to synergy betweenmultiple techniquesthan to



the sum of individual techniques. In figure 5 we presentall of the datausedto generate
figure 4 left. The striped bar at left is the cutsize of the walggdrithm. The other groups
of barsrepresenthe cutsizesgeneratedby adding eachpossibleunusedtechniqueto the
bestalgorithm found in the prior group of bars. Thus, the leftmost group of 5 bars
represent 5 possible techniques to &oldhe worstalgorithm, and the group of 5 barsjust
to the right represent the 5 possible additions to the best algdrittinmthe leftmostgroup
of bars. Note that the leftmost set of barsis missing one bar, since we cannot consider
recursive clustering & iterative unclustering until we first introduce a clustering metric.
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Figure 4. Two methods of determining the contribution of individual
partitioning techniques to the overall results. At left are the resulting cutsizes

after starting with the worst algorithm, then iteratively adding the technique
that gives the greatest improvement at that point. At right are the results of
comparing our best algorithm vs. taking the specified technique and replacing
it with the worst alternative in this paper.
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Figure 5. Details of the comparison of individual features. The bar at left is
the cutsize of the worst algorithm. Each group of bars is the set of all possible
improvements to the algorithm. Gray horizontal lines show the cutsize of the
best choice in a given group of bars.
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The observationto be made from figure 5 is that a technique can have a radically
different impacton the overall cutsizedependingon what other techniquesare used. For
example,if we apply the worst algorithm to non-technology mappedfiles, the resulting
cutsizes increase by about 9%; Onceasdd connectivity clusteringto the worstalgorithm
we then see an improvemeoit 3% by working on non-technologymappedfiles. In fact,
figure 5 shows caseswhere we degradethe cutsize by applying random initialization,
presweeping, or higher-level gains, even though all of thed®niquesare usedin our best
algorithm, and the cutsizeswould increaseif we removedany of thesetechniques. The
conclusion to beaeachedseemsto be that it is not just individual techniquesthat generate
the best cutsizes,but it is the intelligent combination of multiple techniques,and the
interactions between them, that is responsible for the strong partitioning results we achieve.

Conclusions

There are numerous approachesto augmentingthe basic Kernighan-Lin, Fiduccia-
Mattheysegpartitioning algorithm, and the proper combinationis far from obvious. We
have demonstratedthat technology-mapping before partitioning is a poor choice,
significantly impacting mapping quality. Clusteringis very important,and we found that
Connectivity clustering performs well, though Shortest-pathclustering is a reasonable
alternative. Recursiveclustering and a hierarchical unclustering technique help take
advantageof the full powerof the clustering algorithm, with iterative unclusteringbeing
somewhat preferred to edge unclustering. AugmeritiegoasicKLFM inner-loop with at
least 2nd- and 3rd-level gains improvesthe final results. The table in the introduction
showsthat applying all of thesetechniquesgeneratesresultsat least17% better than the
state-of-the-art in partitioning research.

This paper has included several novel techniques, or efficient implementations of existing
work. We have startedfrom the basework of Schulerand Ulrich [17] to develop an
efficient, effective clustering method. We have also crettegresweepingclusteringpre-
processor to help most algorithms handle small fanout gateshawéeshownhow shortest-
path clustering can be implemented efficiently. We developedthe edge unclustering
method, which is competitive with iterative unclustering. Finally, we have extendedthe
work of Krishnamurthy [25], bothio allow higher-ordergainsto be appliedto netsnot in
the cutset, and also to give an efficient implementation, even when the circuit is clustered.

Beyond the details of how exactly to constructthe best partitioner, there are several
important lessonsto be learned. As we have seen,the only way to determinewhethera
given optimization to a partitioning algorithm makessenseis to actually try it out, and to
consider how it interacts with other optimizations. We have shown that many of the
optimizations had greater difficulty working on clustered circuits than on unclustered
circuits, yet clustering seems to be importanathievethe bestresults. Also, many of the
clustering algorithms seem to assumethe circuit will be technology-mappedbefore
partitioning, yet technology-mappingthe circuit will greatly increasethe cutsize of the
resulting partitionings. However,it is quite possibleto reacha different conclusionif we
use only the basic KLFM algorithm, and remy of the numerousenhancementgroposed
since then. By using the basic KLFM algorithm, cutsizes are huge, and subtle effelots can
ignored. While a decreaseof 10 in the cutsetis not significant when cutsizesare in the
hundreds, it is critical when cutsizes are in the tens. Thus, it is important tivatcastinue
research in partitioning we properly place new concepts and optimizatidhe @ontext of
what has already been discovered.
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