
Traversal Caches: A First Step towards FPGA Acceleration
of Pointer-Based Data Structures

Greg Stitt, Gaurav Chaudhari, James Coole
University of Florida

Department of Electrical and Computer Engineering

{gstitt, guchaudhari, jcoole}@ufl.edu
ABSTRACT
Field-programmable gate arrays (FPGAs) often achieve order of
magnitude speedups compared to microprocessors, but typically
have been unable to improve the performance of applications with
irregular memory access patterns, such as traversals of pointer-
based data structures. Due to the common use of these data
structures, the applicability and widespread success of FPGAs has
been limited. In this paper, we introduce the traversal cache
framework – a first step towards improving the performance of
FPGA applications that utilize pointer-based data structures. The
traversal cache is a local FPGA memory that stores repeated
traversals of pointer-based data structures, allowing for these
traversals to be efficiently streamed into the FPGA. Although the
cache is generally limited to improving applications that exhibit
repeated traversals, we show that many applications in fact have
this characteristic. Furthermore, we show that few repetitions are
needed to achieve performance improvements. We present
experimental results showing that FPGA implementations using
the traversal cache framework achieve speedups ranging from 7x
to 29x compared to pointer-based software on a 3.2 GHz Xeon.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems.

General Terms
Performance, Design.

Keywords
Traversal cache, FPGA, pointers, synthesis, CAD,
hardware/software partitioning.

1. INTRODUCTION
Field-programmable gate arrays (FPGAs) and other
reconfigurable computing devices have been shown to achieve
10x to 100x speedups compared to state-of-the-art
microprocessors for many applications [5][11]. FPGAs achieve
such speedup by exploiting tremendous amounts of parallelism,
ranging from the bit level up to the task level. FPGA designs
often use heavily pipelined implementations to improve
throughput, which greatly increases memory bandwidth
requirements [14]. If data cannot be delivered at a sufficient rate,
these pipelines frequently stall, often resulting in significant
slowdown compared to microprocessors [12].

Due to the need for efficient data transfer, FPGAs have typically
been unable to effectively implement code with irregular access
patterns [6]. We define an irregular access pattern as any access
that does not fetch data sequentially from memory, or patterns
that cannot be buffered based on compile time analysis [10].
Although there are many types of problematic irregular access
patterns, in this paper we focus on pointer-based patterns, which
cause several performance problems for FPGA implementations.
First, traversals of pointer-based structures, such as lists, require
multiple memory accesses to fetch a single item of data. Second,
data in consecutive nodes of pointer-based structures is rarely
stored at consecutive memory locations, requiring inefficient non-
sequential memory accesses that use many lengthy row address
strobes (RAS), which typically take much longer than a column
address strobe (CAS) [8]. Non-sequential accesses also prohibit
use of specialized burst access modes [8]. Furthermore, many
FPGAs access memory using DMA units that only support block
transfers. Due to the common use of pointer-based data structures,
inefficient FPGA performance for these structures has limited the
widespread success of FPGAs.
In this paper, we present the traversal cache framework, which
often eliminates the performance limitations caused by pointer-
based data structures on FPGAs. The traversal cache framework is
motivated by the observation that applications often traverse
portions of a pointer-based data structure multiple times before
either changing the data structure, or changing the way the
structure is traversed. The traversal cache framework capitalizes
on this characteristic by reordering data involved in repeated
traversals and caching that data sequentially in a local FPGA

Figure 1: Conceptual idea of traversal caches, where repeated
traversals of pointer-based structures are stored sequentially to

improve memory bandwidth to custom circuits.

Data (no overhead) from
raversal stored sequentially

into traversal cache

Circuit traverses list 1) t3) RAM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00.

 1
D1

* *

+

D2

D3

D4

. . .
D1 D2 D3

3

D4 . . .

2 7

4

5

6 8
1 2

TRAVERSAL
CACHE

3 4

After 1st
traversal, data
streamed from
traversal cache:
1 input every
cycle

Overhead
memory
accesses and
scattered data:
1 input every
n cycles

2) 4)

5) After 1st traversal, 1 output
every cycle, speedup of ~n

memory, as is illustrated in Figure 1 for a simple linked list.
When executing a traversal for the first time, the FPGA traverses
the list (with assistance from a microprocessor) and passes the
data to the datapath while simultaneously storing the data
sequentially into a traversal cache, allowing all future repeated
traversals to avoid overhead memory accesses and lengthy RAS
operations. Traversal caches improve the memory bandwidth of
pointer-based data structure traversals, yielding speedup as high
as 29x compared to pointer-based code running on a 3.2 GHz
Xeon.
Of course, traversal caches are limited to improving the
performance of repeated traversals of a data structure. If the data
structure changes, or if the algorithm traverses the structure
differently, the framework must invalidate the traversal cache and
read the new traversal from memory. Clearly, the overall
performance improvements from traversal caches depend on how
frequently the traversal cache is invalidated, which we refer to as
the invalidation rate. We have observed that many applications
do in fact have a low invalidation rate, and are therefore amenable
to the traversal cache framework. For example, an n-body
simulation may traverse a quad tree structure hundreds or even
thousands of times in the same way.
The paper is formatted as follows. Section 2 discusses previous
work. Section 3 gives the details of the traversal cache
framework. Section 4 presents experimental results.

2. PREVIOUS WORK
Previous work has investigated hardware synthesis techniques for
code utilizing pointers. In [18], Semeria integrated alias analysis
techniques into a high-level synthesis tool flow to help resolve
aliases at compile time, thus enabling further optimization and
utilization of multiple memories. These techniques were later
extended in [19] to support dynamic memory allocation by
integrating a memory manager into the synthesized circuit. The
traversal cache framework is a complementary approach that
targets hardware/software codesign by not restricting the
hardware to using a separate memory management unit – a
situation that may not be practical or efficient for all FPGA
accelerators.
Diniz [6] utilized FPGAs to create smart memory engines capable
of reorganizing data from pointer-based data structures to improve
data locality and cache performance. The traversal cache
framework has a similar goal, but does not reorder data in main
memory, and thus does not have the alias restrictions of [6].
Furthermore, the traversal cache framework can be applied to any
FPGA accelerator, including those that access memory via DMA.
Impulse [2] introduced a memory controller that remaps physical
addresses to improve cache performance and memory bandwidth.
Impulse remapped data using specialized languages and operating
system support. The traversal cache framework does not have
these restrictions, and only requires use of a specific library.
Specialized cache architectures and memory allocation techniques
have also been introduced to better handle pointer operations.
Collins et al. [4] introduced the pointer cache to efficiently handle
chained pointer traversals by prefetching data based on pointer
transitions. Weinberg [20] eliminates pointer-based memory
accesses at runtime by caching previous evaluation results. Hu
[13] predicts memory behavior and utilizes a time-based victim
cache to improve hit rate. Chilimbi et al. [3] discuss manual
programming practices that can improve data locality of pointer
structures, in addition to automatic data layout optimizations that
are integrated into garbage collection. Calder [1] considers cache-

conscious data placement for heap and stack objects. The
traversal cache framework provides similar optimizations for
FPGAs, which commonly have direct access to memory and
therefore do not benefit from traditional cache optimization.
Smart buffers [10] are a data caching scheme for FPGAs that
prevent reused data from being read multiple times from memory.
Smart buffers greatly improve memory bandwidth and FPGA
performance, but do not support pointer-based data structures.
Numerous compiler optimizations [8][9][17] modify data layout
at compile time based on memory access patterns. Traversal
caches improve on these previous approaches by supporting
pointer-based data structures.

3. TRAVERSAL CACHE FRAMEWORK
In this section, we discuss the functionality required to enable the
traversal cache framework, which includes the system
architecture, hardware/software communication, and traversal-
cache software library.

3.1 System Architecture
The system architecture used by the traversal cache framework is
illustrated in Figure 2(a). The architecture consists of two main
components: the microprocessor and the FPGA accelerator. The
microprocessor executes all software regions of the code, and
assists in fetching traversals anytime the traversal cache is empty
or invalidated. The framework supports any type of
microprocessor but currently uses a 3.2 GHz Xeon. The FPGA
accelerator implements pipelined datapaths for computation-
intensive kernels, while using the traversal cache to efficiently
handle pointer-based data structures.
The system architecture utilizes three memories. The
microprocessor uses one memory and the FPGA uses two
memories to enable simultaneous streaming of inputs and outputs.
Although not shown in the figure, the framework allows data to
be copied between the microprocessor memory and FPGA
memories. Communication details are discussed in the following
section.
The architectural details of the FPGA accelerator are shown in
Figure 2(b). The controller interprets messages from the
microprocessor, and enables the address generators when the
microprocessor activates the accelerator. The address generators
control the input and output memories in order to read or store a
data structure traversal. The address generators currently support
sequential memory accesses, or linear accesses with a specified
stride. The datapath is a pipeline customized for each specific
kernel. The invalidation logic determines runtime traversal cache
invalidations. More details are given in section 3.3.
The input memory hierarchy used by the accelerator consists of
three possible data sources. The accelerator uses a RAM for
normal array traversals, for which data can efficiently be streamed
into the datapath by the address generators. Although the
framework currently utilizes external SRAM and on-chip block
RAM, any type of memory is supported. In addition to the RAM,
the input memory hierarchy uses the traversal cache to store
pointer-based data structure traversals in sequential order. The
assisted data buffer stores data from the software assisted data
stream as it arrives from the microprocessor, while
simultaneously being stored into the traversal cache.
The output memory hierarchy is similar to the input memory
hierarchy, consisting of a separate RAM, and possibly a separate
traversal cache. The output traversal cache enables efficient

Figure 2: (a) The traversal cache framework, which initially utilizes a microprocessor to assist with pointer-based data structure
traversals. During an assisted traversal, the (b) FPGA accelerator stores the traversal sequentially into the traversal cache, allowing future

executions of the same traversal to efficiently stream data into the datapath.
streaming of outputs for code that writes to a pointer-based data
structure.
Although given the name “cache”, the framework allows the
traversal cache to be implemented in several ways. If the stored
traversal is small enough, the traversal cache may be stored in on-
chip block RAM. For systems with an integrated CPU, the
traversal cache may potentially be implemented using scratchpad
memory. In the general case, the framework implements the
traversal cache using some form of external memory, such as
SRAM or SDRAM. Although utilizing an external memory may
seem like an inefficient use of resources, many FPGA accelerator
boards have numerous memories [7][16] that may otherwise be
unutilized. Alternatively, the traversal cache could share the same
memory with other data needed by the accelerator.
We point out that although we present a specific system
architecture in this paper, the framework supports numerous other
architectural possibilities. For example, the microprocessor and
FPGA may be tightly coupled, existing on either the same chip or
the same board, or loosely coupled, where the microprocessor and
FPGA communicate using a PCI-X bus or network. The
microprocessor may be implemented on an FPGA as either a soft
core [21], or as a hard core [22]. Another alternative is the use of
a shared memory between the microprocessor and FPGA, which
requires tighter coupling, but avoids the situation of having to
copy data before the accelerator can start – a situation that may
limit speedup.

3.2 Hardware/Software Communication
Communication between the microprocessor and FPGA consists
of the signals shown in Figure 2(a). For simplicity, we do not
show signals for copying data to/from the microprocessor
memory into the local FPGA memories. However, that
communication is of course included by the implementations used
in the experiments. The bold signals are unique to the traversal
cache framework, while all other signals are used for normal
synchronization.
When the microprocessor reaches a kernel that requires a pointer-
based data structure traversal, the microprocessor asserts the
is_traversal control signal to inform the accelerator that a

traversal is being performed. If the traversal cache is invalid,
meaning that the traversal is not stored in the traversal cache, then
the accelerator responds by asserting the need_assist signal. If the
accelerator requires assistance, the microprocessor first enables
the accelerator using the go signal, and then performs the traversal
in software, fetching the data that is needed, and passing that data
to the accelerators in the software assisted data stream
(sw_assisted_data). The accelerator datapath processes this data
as it arrives, often requiring many stall cycles, which is one
reason pointer structures have previously been inefficient.
However, as the data arrives, the accelerator stores the data in
sequential order into the traversal cache so that future repetitions
of this traversal can be handled more efficiently. After sending the
entire traversal to the accelerator, the microprocessor deasserts the
is_traversal signal and waits for the accelerator to complete. After
processing the entire traversal, the accelerator asserts the done
signal, which allows the microprocessor to resume software
execution.
In the case that a pointer-based traversal is not needed, the
microprocessor simply copies the needed data to the FPGA
memory, and then asserts the go signal, in which case the
accelerator fetches data from RAM instead of from the traversal
cache.
The microprocessor uses the control signal invalidate to inform
the FPGA that the data in the traversal cache is invalid and should
no longer be used. Invalidations may result from a number of
situations that are described in section 3.3.
In the case of multiple traversal caches, the framework utilizes a
traversal identifier signal (traversal_id) to specify which traversal
cache should be used for the current traversal. This identifier
allows for multiple traversals to be utilized in the case that an
application repeatedly traverses different data structures, or the
same data structure in different ways.
The framework currently implements all control and
synchronization signals using memory mapped registers inside the
FPGA. The microprocessor writes the software-assisted data
stream directly into the assisted data buffer, which is either a
SRAM or block RAM depending on the size. All communication
occurs over a PCI-X interface. The FPGA uses additional logic

Micro-
processor

sw_assisted_data

is_traversal

enable
need_assist

done

RAM

RAM

Controller
Datapath

Assisted
Data

Buffer

Traversal
Cache

RAM

RAM

Address
Generator

FIFO

sw_assisted_data

FIFOAddress
Generator

is_traversal

enable
need_assist

done

RAM

(a) (b)

FPGA
Accelerator

addr

mode

invalidate
invalidate

addr
Traversal

Cache

Invalidation
Logic

traversal_id

invalidatetraversal id

not shown in the figure to route data from the PCI-X bus into the
appropriate location in the FPGA. We point out that the
framework is independent of the communication architecture,
potentially supporting any underlying architecture that can
implement the discussed control signals.

3.3 Software Library
To utilize the traversal cache, the accelerator requires assistance
from a software library running on the microprocessor. The
library is responsible for specifying when a traversal occurs,
detecting invalidations of a traversal, and passing data to the
accelerator when the traversal cache is empty or invalidated. We
currently implement this functionality using a library of wrapper
functions around standard data structures, but plan to automate
this process as part of a high-level synthesis and
hardware/software partitioning tool, which could theoretically
allow a user of the framework to utilize any library.
To specify a traversal, the wrapper functions send the appropriate
control signals to the FPGA, wait to see if assistance is needed,
and then begin fetching the data used by the traversal. The library
uses a different wrapper function for each type of traversal, such
as an in-order tree traversal, a depth first search of a graph, etc.
The most challenging task required by the software is to detect
traversal invalidations. Currently, the framework invalidates the
cache anytime the data stored in the data structure is changed, and
also when the traversal changes (e.g. in-order to post-order).
Detecting changes to the data structure is a challenging problem,
due to aliasing issues that may exist in the code. To avoid these
issues, the framework requires that any changes made to the data
structure be made through the use of the wrapper functions. This
requirement guarantees that the traversal cache will be invalidated
for any modification to the data structure. Furthermore, this
requirement does not restrict the use of aliases outside the
wrappers because those aliases cannot modify the structure.
The software library detects changes in the ordering of a traversal
in the following way. In the simple case that the ordering of the
traversal is known at compile time, the code simply uses a
different wrapper function for each type of traversal. However,
not all traversals follow a path through the data structure that is
known at compile time. Binary search is an example of this
problem, where the traversal of the data structure depends on the
values in both the data structure and the input value. For cases
where the software library cannot determine invalidation until
runtime, the accelerator utilizes invalidation logic to dynamically
check for invalid traversals. This runtime analysis requires extra
data to be stored in the traversal cache to allow the accelerator to
determine if the actual traversal differs from the stored traversal.
If the accelerator invalidates the traversal cache at runtime, the
accelerator requests assistance from the microprocessor to fetch
the correct traversal and then restarts execution.

3.4 Limitations
The main limitation of the traversal cache framework is that not
all applications using pointer-based data structures are amenable
to speedup. To achieve speedup, the application typically must
have repeated traversals. However, as shown in the experiments
section, few repetitions are typically needed before the traversal
cache achieves improvements. In fact, for some computational-
intensive applications, speedup can be obtained even if the
traversal cache is invalidated for every traversal.
Another limitation is that the traversal cache must be manually
created and the specified software library must be used. Ideally, a

hardware/software partitioning tool could partition the application
automatically, high-level synthesis could determine the
appropriate size and amount of traversal caches, and also modify
the software source code appropriately for use with any data
structure library. These issues are outside the scope of this paper,
but we plan to introduce synthesis techniques for traversal caches
as part of future work.

4. EXPERIMENTS
4.1 Experimental Setup
To evaluate the traversal caches, we implemented the framework
on the Nallatech H101-PCIXM [16]. This board consists of a
Xilinx Virtex 4 LX100 FPGA, in addition to 4 SRAM banks. We
mapped the framework onto this target architecture in the
following way. The microprocessor is a 3.2 GHz Xeon, and the
FPGA is the LX100 on the H101-PCXM. All communication
between the microprocessor and FPGA, which includes the
software-assisted data stream, control signals, and
synchronization signals are sent over a PCI-X bus. Control and
synchronization signals are read from and written to memory
mapped registers inside of the LX100 using memory map nodes
provided by Nallatech. The software assisted data stream is
written into one of the SRAM banks, or alternatively block RAM
on the LX100 if the traversal is small enough. To test realistic
traversal sizes, all of our tests utilize the SRAM. Utilizing block
RAM could potentially improve the reported results due to
increased memory bandwidth. The traversal cache is also
implemented by one SRAM bank. Although traversal caches can
potentially be used for outputs, in this paper the tested examples
do not require an output cache, and instead write outputs directly
to an SRAM bank. The invalidation logic was also not required
for any of the tested examples because we could determine all
possible invalidations at compile time. The selected examples are
representative of many FPGA-amenable kernels, which implies
many examples may not need the invalidation logic. We plan to
determine of the effects of the invalidation logic as future work.
To investigate effects of invalidation rate on performance, we do
not base the invalidation rate on a specific input stream, and
instead manually test different invalidation rates. This approach
allows us to test different input possibilities, ranging from the
worst case to the best case. For each example, we test invalidation
rates of 1 (invalidate every traversal), 5 (invalidate every 5
traversals), 10, 20, 40, and 80.
We evaluated the framework using the following benchmarks,
which we developed. For each benchmark, we describe the
pointer-based data structure and justify tested invalidation rates.
Search scans a linked list of 1 million 16-bit integers and
determines the number of occurrences of a specified value. The
FPGA implementation performs 16, 16-bit comparisons and 15
additions every cycle. The implementation consisted of 3933 lines
of VHDL and 1409 lines of C code. The invalidation rate for
search is likely to be low for any application that searches a data
structure multiple times without changing, such as a database
application.
Audio performs convolution of an input signal consisting of 16-bit
audio samples with a 64 sample impulse response. The data
structure used by audio is a linked list of audio streams, which
may likely occur in a digital audio workstation or a video game.
Repeated traversals are likely since the actual audio stored in
these applications does not change frequently. The circuit
implementation performs 64 multiplications and 63 additions

0

5

10

15

20

25

30

35

Search Audio Graphics N-body Avg

Pointer

Array

IR1

IR5

IR10

IR20

IR40

IR80

0

10

20

30

40

50

60

70

80

Search Audio Graphics N-body Avg

Pointer

Array

IR1

IR5

IR10

IR20

IR40

IR80

 Figure 3: (a) Speedups obtained by the traversal cache framewo
based software (pointer) running on a 3.2 GHz Xeon. Performance o

high invalidation rates (low IR values) typically achieve large sp
implementations to use arrays instead of pointer-based data structur

speedup for the other examples, which suggests traversal cache

every cycle, and required 4496 lines of VHDL and 1399 lines of
C code.
N-body determines the forces exerted on 100,000 particles for 80
time steps. The data structure used by n-body is a quad tree,
which recursively divides the 2-dimensional space that contains
the particles into small subspaces. N-body performs 8
multiplications, 2 divides, 2 additions, 2 subtractions, 1 square
root, and 2 accumulations every cycle. All operations are floating
point except for the accumulations. We are implementing a
pipelined floating point accumulator, but currently use a large
fixed point accumulator with 32 integer bits and 24 fraction bits.
N-body required 4865 lines of VHDL and 1439 lines of C code.
The VHDL utilized a floating point multiplier, divider, square
root, adder, subtracter, float-to-fixed, and fixed-to-float
component from Xilinx CORE Generator. The quad tree structure
is normally used by the Barnes-Hut algorithm to reduce the
complexity of n-body simulations from O(n2) to O(n*lgn).
However, for our experiments, the circuit implementation
searches the entire quad tree to avoid inflating the benefits of
traversal caches compared to an array implementation. Therefore,
actual execution times using a quad tree, with or without traversal
caches, is likely better than reported.
Graphics performs 3-dimensional vertex transformations by
multiplying 4x4 transformation matrices with 4x1 vertex matrices.
Graphics uses a list of vertex arrays, where each node of the list
represents an object to be rendered. The implementation performs
16 multiplications and 28 additions every cycle. All operations
are floating point. The implementation used 4166 lines of VHDL
and 1435 lines of C code, in addition to a floating point multiplier
and adder from Xilinx CORE Generator.
For each benchmark, we manually performed hardware/software
partitioning and then created a custom accelerator for the single
most computationally-intensive kernel, using the traversal cache
framework. We specified the entire framework using VHDL, and
then specified the remainder of the FPGA environment using
Nallatech DIMEtalk [15], which included the PCI-X interface,
SRAM memory controllers, and memory map interfaces. We
synthesized the resulting VHDL using Xilinx ISE 8.1.
We executed each example at the maximum possible clock
frequency obtained after placement and routing, which ranged
from 115 MHz for graphics to 135 MHz for search.
For all experiments, we compare traversal cache performance to
software running on a 3.2 GHz Xeon. We compiled each
benchmark using gcc 3.4.6 with –O3 optimizations to ensure that
the baseline in the comparisons was as fast as possible.

(b)

(a)
rk for invalidation rates (IR) ranging from 1 to 80, compared to pointer-
f array-based software (array) is also shown. The results show that even
eedup. (b) The same comparisons after recoding the traversal cache
es. The results show increased speedup for search, but almost identical
s often completely hide the overhead of pointer-based structures.

4.2 Speedup Compared to Software
This section presents performance advantages of the traversal
cache framework compared to software running on a 3.2 GHz
Xeon. Figure 3(a) shows speedups obtained by the traversal cache
compared to pointer-based software (shown as pointer in the
figure). The figure includes speedups for each invalidation rate
(abbreviated IR). The figure also shows the performance of
software using sequential array traversals (shown as array in the
figure) instead of pointer-based data structure traversals.
For the search example, only the highest invalidation rate (IR1)
was slower than the pointer-based software. All other invalidation
rates achieved large speedup compared to pointer-based software,
reaching as high as 29x for IR80. Array-based software
performance was better than the traversal cache framework for all
invalidation rates under 40. For the IR80 case, the traversal cache
was 1.3x faster than the software array implementation.
For audio, all invalidation rates, including IR1, were faster than
both the pointer-based software implementation and the array
implementation. Speedup ranged from 6.2x to 8.2x. The reason
for the increased speedup at higher invalidation rates was because
audio performed more computation for each piece of data,
minimizing the effects of transferring the data to the FPGA.
Graphics achieved similar results, always outperforming the
pointer and array software implementations, with speedup ranging
from 1.2x to 6.7x.
For n-body, the traversal cache framework also outperformed
software for all invalidation rates. The main difference for this
example was the lack of speedup increase for lower invalidation
rates. This difference resulted from a significant amount of
computation for each piece of data sent to the FPGA, which
completely dominated the data transfer times. A similar result can
be seen for the audio example, where the slope of speedup
increase is less than the other examples. Speedup for n-body was
8.7x for all invalidation rates compared to pointer-based software,
and 2.5x compared to array-based software.

4.3 Speedup after Recoding
To determine how much improvement could be obtained by using
arrays within the traversal cache framework instead of pointer-
based data structures, in this section we report the speedups
assuming a designer were to recode the benchmarks to use arrays.
Figure 3(b) illustrates the speedup, again compared to pointer-
based software, after recoding. For search, speedup more than

doubled, reaching 70x for IR80. The increased speedup resulted
from the significantly slower pointer-based software, which was
more than 20x slower than the array-based software. We believe
this performance difference is due to page faults caused by the
large list size. All other examples achieved almost identical
performances after being implemented with arrays. This
surprising result implies that for certain examples, traversal
caches make pointer-based code just as efficient on FPGAs as
array-based code – a significant achievement considering the
traditionally bad performance that has resulted from pointer-based
structures.

5. CONCLUSIONS
In this paper, we introduced the traversal cache framework. By
caching repeated traversals of pointer-based data structures,
traversal caches deliver data to custom pipelined datapaths
implemented in FPGAs faster than previously possible, resulting
in speedups as high as 29x compared to software execution on a
3.2 GHz Xeon. Furthermore, for several examples, performance
was almost identical after recoding to eliminate pointers, which
implies that traversal caches may often completely hide the
overhead of pointer-based structures. Although some applications
with high invalidation rates may not be amenable to traversal
caches, there are numerous applications that benefit from this
framework. Furthermore, we showed that even for applications
with high invalidation rates, traversal caches can achieve
significant speedup.

6. ACKNOWLEDGMENTS
The authors thankfully acknowledge equipment donations from
Nallatech and Xilinx.

7. REFERENCES
[1] Calder, B., Krintz, C., John, S. and Austin, T. 1998. Cache-

conscious data placement. Proceedings of the International
Conference on Architecture Support for Programming
Languages and Operating Systems, pp. 139-149.

[2] Carter, J., Hsieh, W., Stoller, L., Swanson, M., Zhang, L.,
Brunvand, E., Davis, A., Kuo, C., Kuramkote, R., Parker,
M., Schaelicke, L., and Tateyama, T. 1999. Impulse:
building a smarter memory controller. Proceedings of the
International Symposium on High Performance Computer
Architecture (HPCA), pp. 70-79.

[3] Chilimbi, T.M., Hill, M.D., and Larus, J.R. 2000. Making
pointer-based data structures cache conscious. Computer,
Vol 33, Issue 12, December 2000, pp. 67-74.

[4] Collins, J., Sair, S., Calder, B., and Tullsen, D. 2002. Pointer
cache assisted prefetching. Proceedings of the International
Symposium on Microarchitecture (MICRO), pp. 62-73.

[5] DeHon, A. 2000. The density advantage of configurable
computing. Computer, Vol. 33, Issue 4, April 2000, pp 41-
49.

[6] Diniz, P. and Park, J. 2003. Data search and reorganization
using FPGAs: application to spatial pointer-based data
structures. Proceedings of the Symposium on FPGAs for
Custom Computing Machines (FCCM), pp. 207-217.

[7] GiDEL. GiDEL PROC Boards, 2008.
http://www.gidel.com/PROCBoards.htm.

[8] Grun, P., Dutt, N., and Nicolau, A. 2001. Access pattern
based local memory customization for low power embedded

systems. Proceedings of Conference on Design, Automation,
and Test in Europe (DATE), pp. 778-784.

[9] Grun, P., Dutt, N., and Nicolau, A. 2000. Memory aware
compilation through accurate timing extraction. Proceedings
of the International Design Automation Conference (DAC),
pp. 316-321.

[10] Guo, Z., Buyukkurt, A. B., and Najjar, W. 2004. Input data
reuse in compiling window operations onto reconfigurable
hardware. Proceedings of the ACM Symposium On
Languages, Compilers and Tools for Embedded Systems
(LCTES).

[11] Guo, Z., Najjar, W., Vahid, F., and Vissers, K. 2004. A
quantitative analysis of the speedup factors of FPGAs over
processors. Proceedings of the International Symposium on
Field Programmable Gate Arrays (FPGA), pp. 162-170.

[12] Holland, B., Nagarajan, K., Conger, C., Jacobs, A., and
George, A. 2007. RAT: a methodology for predicting
performance in application design migration to FPGAs.
Proceedings of the Workshop on High-Performance
Reconfigurable Computing Technology and Applications
(HPRCTA), pp 1-10.

[13] Hu, Z., Kaxiras, S., and Martonosi, M. 2002. Timekeeping in
the memory system: prediction and optimizing memory
behavior. Proceedings of the International Symposium on
Computer Architecture (ISCA), pp. 209-220.

[14] Jacob, J. and Chow, P. 1999. Memory interfacing and
instruction specification for reconfigurable processors.
Proceedings of the International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 145-154.

[15] Nallatech Inc. DIMEtalk 3, 2008.
http://www.nallatech.com/?node_id=1.2.2&id=19.

[16] Nallatech Inc. Nallatech PCIXM FPGA accelerator card,
2008. http://www.nallatech.com/?node_id=1.2.2&id=41.

[17] Panda, P.R., Catthoor, F., Dutt, N., Danckaert, K.,
Brockmeyer, E., Kulkarni, C., Vandercappelle, A., and
Kjeldsberg, P.G. 2001. Data and memory optimization
techniques for embedded systems. ACM Transactions on
Design Automation of Electronic Systems (TODAES), Vol.
6, Issue 2, 2001, pp. 149-206.

[18] Semeria, L. and De Micheli, G. 1998. SpC: synthesis of
pointers in C. Proceedings of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 340-
346.

[19] Semeria, L., Sato, K., and De Micheli, G. 2001. Synthesis of
hardware models in C with pointers and complex data
structures. IEEE Transactions of Very Large Scale
Integration Systems (TVLSI), Vol. 9, Issue 6, Decemeber
2001, pp. 743-756.

[20] Weinberg, N. and Nagle, D. 1998. Dynamic elimination of
pointer-expressions. Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, pp. 142-147.

[21] Xilinx Inc. MicroBlaze, 2008.
http://www.xilinx.com/products/design_resources/proc_centr
al/microblaze.htm.

[22] Xilinx Inc. Virtex IV FX devices, 2008.
http://www.xilinx.com/products/silicon_solutions/fpgas/virte
x/virtex4/index.htm.

	INTRODUCTION
	PREVIOUS WORK
	TRAVERSAL CACHE FRAMEWORK
	System Architecture
	Hardware/Software Communication
	Software Library
	Limitations

	EXPERIMENTS
	Experimental Setup
	Speedup Compared to Software
	Speedup after Recoding

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

