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ABSTRACT 
Field-programmable gate arrays (FPGAs) often achieve order of 
magnitude speedups compared to microprocessors, but typically 
have been unable to improve the performance of applications with 
irregular memory access patterns, such as traversals of pointer-
based data structures. Due to the common use of these data 
structures, the applicability and widespread success of FPGAs has 
been limited. In this paper, we introduce the traversal cache 
framework – a first step towards improving the performance of 
FPGA applications that utilize pointer-based data structures. The 
traversal cache is a local FPGA memory that stores repeated 
traversals of pointer-based data structures, allowing for these 
traversals to be efficiently streamed into the FPGA. Although the 
cache is generally limited to improving applications that exhibit 
repeated traversals, we show that many applications in fact have 
this characteristic. Furthermore, we show that few repetitions are 
needed to achieve performance improvements. We present 
experimental results showing that FPGA implementations using 
the traversal cache framework achieve speedups ranging from 7x 
to 29x compared to pointer-based software on a 3.2 GHz Xeon.   

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems. 

General Terms 
Performance, Design. 

Keywords 
Traversal cache, FPGA, pointers, synthesis, CAD, 
hardware/software partitioning. 

1. INTRODUCTION 
Field-programmable gate arrays (FPGAs) and other 
reconfigurable computing devices have been shown to achieve 
10x to 100x speedups compared to state-of-the-art 
microprocessors for many applications [5][11]. FPGAs achieve 
such speedup by exploiting tremendous amounts of parallelism, 
ranging from the bit level up to the task level. FPGA designs 
often use heavily pipelined implementations to improve 
throughput, which greatly increases memory bandwidth 
requirements [14]. If data cannot be delivered at a sufficient rate, 
these pipelines frequently stall, often resulting in significant 
slowdown compared to microprocessors [12]. 

Due to the need for efficient data transfer, FPGAs have typically 
been unable to effectively implement code with irregular access 
patterns [6]. We define an irregular access pattern as any access 
that does not fetch data sequentially from memory, or patterns 
that cannot be buffered based on compile time analysis [10]. 
Although there are many types of problematic irregular access 
patterns, in this paper we focus on pointer-based patterns, which 
cause several performance problems for FPGA implementations. 
First, traversals of pointer-based structures, such as lists, require 
multiple memory accesses to fetch a single item of data. Second, 
data in consecutive nodes of pointer-based structures is rarely 
stored at consecutive memory locations, requiring inefficient non-
sequential memory accesses that use many lengthy row address 
strobes (RAS), which typically take much longer than a column 
address strobe (CAS) [8]. Non-sequential accesses also prohibit 
use of specialized burst access modes [8]. Furthermore, many 
FPGAs access memory using DMA units that only support block 
transfers. Due to the common use of pointer-based data structures, 
inefficient FPGA performance for these structures has limited the 
widespread success of FPGAs. 
In this paper, we present the traversal cache framework, which 
often eliminates the performance limitations caused by pointer-
based data structures on FPGAs. The traversal cache framework is 
motivated by the observation that applications often traverse 
portions of a pointer-based data structure multiple times before 
either changing the data structure, or changing the way the 
structure is traversed. The traversal cache framework capitalizes 
on this characteristic by reordering data involved in repeated 
traversals and caching that data sequentially in a local FPGA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Conceptual idea of traversal caches, where repeated 
traversals of pointer-based structures are stored sequentially to 

improve memory bandwidth to custom circuits. 
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memory, as is illustrated in Figure 1 for a simple linked list. 
When executing a traversal for the first time, the FPGA traverses 
the list (with assistance from a microprocessor) and passes the 
data to the datapath while simultaneously storing the data 
sequentially into a traversal cache, allowing all future repeated 
traversals to avoid overhead memory accesses and lengthy RAS 
operations. Traversal caches improve the memory bandwidth of 
pointer-based data structure traversals, yielding speedup as high 
as 29x compared to pointer-based code running on a 3.2 GHz 
Xeon. 
Of course, traversal caches are limited to improving the 
performance of repeated traversals of a data structure. If the data 
structure changes, or if the algorithm traverses the structure 
differently, the framework must invalidate the traversal cache and 
read the new traversal from memory. Clearly, the overall 
performance improvements from traversal caches depend on how 
frequently the traversal cache is invalidated, which we refer to as 
the invalidation rate. We have observed that many applications 
do in fact have a low invalidation rate, and are therefore amenable 
to the traversal cache framework. For example, an n-body 
simulation may traverse a quad tree structure hundreds or even 
thousands of times in the same way.  
The paper is formatted as follows. Section 2 discusses previous 
work. Section 3 gives the details of the traversal cache 
framework. Section 4 presents experimental results. 

2. PREVIOUS WORK 
Previous work has investigated hardware synthesis techniques for 
code utilizing pointers. In [18], Semeria integrated alias analysis 
techniques into a high-level synthesis tool flow to help resolve 
aliases at compile time, thus enabling further optimization and 
utilization of multiple memories. These techniques were later 
extended in [19] to support dynamic memory allocation by 
integrating a memory manager into the synthesized circuit. The 
traversal cache framework is a complementary approach that 
targets hardware/software codesign by not restricting the 
hardware to using a separate memory management unit – a 
situation that may not be practical or efficient for all FPGA 
accelerators.  
Diniz [6] utilized FPGAs to create smart memory engines capable 
of reorganizing data from pointer-based data structures to improve 
data locality and cache performance. The traversal cache 
framework has a similar goal, but does not reorder data in main 
memory, and thus does not have the alias restrictions of [6]. 
Furthermore, the traversal cache framework can be applied to any 
FPGA accelerator, including those that access memory via DMA. 
Impulse [2] introduced a memory controller that remaps physical 
addresses to improve cache performance and memory bandwidth. 
Impulse remapped data using specialized languages and operating 
system support. The traversal cache framework does not have 
these restrictions, and only requires use of a specific library. 
Specialized cache architectures and memory allocation techniques 
have also been introduced to better handle pointer operations. 
Collins et al. [4] introduced the pointer cache to efficiently handle 
chained pointer traversals by prefetching data based on pointer 
transitions. Weinberg [20] eliminates pointer-based memory 
accesses at runtime by caching previous evaluation results. Hu 
[13] predicts memory behavior and utilizes a time-based victim 
cache to improve hit rate. Chilimbi et al. [3] discuss manual 
programming practices that can improve data locality of pointer 
structures, in addition to automatic data layout optimizations that 
are integrated into garbage collection. Calder [1] considers cache-

conscious data placement for heap and stack objects. The 
traversal cache framework provides similar optimizations for 
FPGAs, which commonly have direct access to memory and 
therefore do not benefit from traditional cache optimization. 
Smart buffers [10] are a data caching scheme for FPGAs that 
prevent reused data from being read multiple times from memory. 
Smart buffers greatly improve memory bandwidth and FPGA 
performance, but do not support pointer-based data structures. 
Numerous compiler optimizations [8][9][17] modify data layout 
at compile time based on memory access patterns. Traversal 
caches improve on these previous approaches by supporting 
pointer-based data structures. 

3. TRAVERSAL CACHE FRAMEWORK 
In this section, we discuss the functionality required to enable the 
traversal cache framework, which includes the system 
architecture, hardware/software communication, and traversal-
cache software library. 

3.1 System Architecture 
The system architecture used by the traversal cache framework is 
illustrated in Figure 2(a). The architecture consists of two main 
components: the microprocessor and the FPGA accelerator. The 
microprocessor executes all software regions of the code, and 
assists in fetching traversals anytime the traversal cache is empty 
or invalidated. The framework supports any type of 
microprocessor but currently uses a 3.2 GHz Xeon. The FPGA 
accelerator implements pipelined datapaths for computation-
intensive kernels, while using the traversal cache to efficiently 
handle pointer-based data structures. 
The system architecture utilizes three memories. The 
microprocessor uses one memory and the FPGA uses two 
memories to enable simultaneous streaming of inputs and outputs. 
Although not shown in the figure, the framework allows data to 
be copied between the microprocessor memory and FPGA 
memories. Communication details are discussed in the following 
section. 
The architectural details of the FPGA accelerator are shown in 
Figure 2(b). The controller interprets messages from the 
microprocessor, and enables the address generators when the 
microprocessor activates the accelerator. The address generators 
control the input and output memories in order to read or store a 
data structure traversal. The address generators currently support 
sequential memory accesses, or linear accesses with a specified 
stride. The datapath is a pipeline customized for each specific 
kernel. The invalidation logic determines runtime traversal cache 
invalidations. More details are given in section 3.3. 
The input memory hierarchy used by the accelerator consists of 
three possible data sources. The accelerator uses a RAM for 
normal array traversals, for which data can efficiently be streamed 
into the datapath by the address generators. Although the 
framework currently utilizes external SRAM and on-chip block 
RAM, any type of memory is supported. In addition to the RAM, 
the input memory hierarchy uses the traversal cache to store 
pointer-based data structure traversals in sequential order. The 
assisted data buffer stores data from the software assisted data 
stream as it arrives from the microprocessor, while 
simultaneously being stored into the traversal cache. 
The output memory hierarchy is similar to the input memory 
hierarchy, consisting of a separate RAM, and possibly a separate 
traversal cache. The output traversal cache enables efficient 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: (a) The traversal cache framework, which initially utilizes a microprocessor to assist with pointer-based data structure 
traversals. During an assisted traversal, the (b) FPGA accelerator stores the traversal sequentially into the traversal cache, allowing future 

executions of the same traversal to efficiently stream data into the datapath. 
streaming of outputs for code that writes to a pointer-based data 
structure. 
Although given the name “cache”, the framework allows the 
traversal cache to be implemented in several ways. If the stored 
traversal is small enough, the traversal cache may be stored in on-
chip block RAM. For systems with an integrated CPU, the 
traversal cache may potentially be implemented using scratchpad 
memory. In the general case, the framework implements the 
traversal cache using some form of external memory, such as 
SRAM or SDRAM. Although utilizing an external memory may 
seem like an inefficient use of resources, many FPGA accelerator 
boards have numerous memories [7][16] that may otherwise be 
unutilized. Alternatively, the traversal cache could share the same 
memory with other data needed by the accelerator. 
We point out that although we present a specific system 
architecture in this paper, the framework supports numerous other 
architectural possibilities. For example, the microprocessor and 
FPGA may be tightly coupled, existing on either the same chip or 
the same board, or loosely coupled, where the microprocessor and 
FPGA communicate using a PCI-X bus or network. The 
microprocessor may be implemented on an FPGA as either a soft 
core [21], or as a hard core [22]. Another alternative is the use of 
a shared memory between the microprocessor and FPGA, which 
requires tighter coupling, but avoids the situation of having to 
copy data before the accelerator can start – a situation that may 
limit speedup. 

3.2 Hardware/Software Communication 
Communication between the microprocessor and FPGA consists 
of the signals shown in Figure 2(a). For simplicity, we do not 
show signals for copying data to/from the microprocessor 
memory into the local FPGA memories. However, that 
communication is of course included by the implementations used 
in the experiments. The bold signals are unique to the traversal 
cache framework, while all other signals are used for normal 
synchronization. 
When the microprocessor reaches a kernel that requires a pointer-
based data structure traversal, the microprocessor asserts the 
is_traversal control signal to inform the accelerator that a 

traversal is being performed. If the traversal cache is invalid, 
meaning that the traversal is not stored in the traversal cache, then 
the accelerator responds by asserting the need_assist signal. If the 
accelerator requires assistance, the microprocessor first enables 
the accelerator using the go signal, and then performs the traversal 
in software, fetching the data that is needed, and passing that data 
to the accelerators in the software assisted data stream 
(sw_assisted_data). The accelerator datapath processes this data 
as it arrives, often requiring many stall cycles, which is one 
reason pointer structures have previously been inefficient. 
However, as the data arrives, the accelerator stores the data in 
sequential order into the traversal cache so that future repetitions 
of this traversal can be handled more efficiently. After sending the 
entire traversal to the accelerator, the microprocessor deasserts the 
is_traversal signal and waits for the accelerator to complete. After 
processing the entire traversal, the accelerator asserts the done 
signal, which allows the microprocessor to resume software 
execution. 
In the case that a pointer-based traversal is not needed, the 
microprocessor simply copies the needed data to the FPGA 
memory, and then asserts the go signal, in which case the 
accelerator fetches data from RAM instead of from the traversal 
cache. 
The microprocessor uses the control signal invalidate to inform 
the FPGA that the data in the traversal cache is invalid and should 
no longer be used. Invalidations may result from a number of 
situations that are described in section 3.3. 
In the case of multiple traversal caches, the framework utilizes a 
traversal identifier signal (traversal_id) to specify which traversal 
cache should be used for the current traversal. This identifier 
allows for multiple traversals to be utilized in the case that an 
application repeatedly traverses different data structures, or the 
same data structure in different ways. 
The framework currently implements all control and 
synchronization signals using memory mapped registers inside the 
FPGA. The microprocessor writes the software-assisted data 
stream directly into the assisted data buffer, which is either a 
SRAM or block RAM depending on the size. All communication 
occurs over a PCI-X interface. The FPGA uses additional logic 
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not shown in the figure to route data from the PCI-X bus into the 
appropriate location in the FPGA. We point out that the 
framework is independent of the communication architecture, 
potentially supporting any underlying architecture that can 
implement the discussed control signals. 

3.3 Software Library 
To utilize the traversal cache, the accelerator requires assistance 
from a software library running on the microprocessor. The 
library is responsible for specifying when a traversal occurs, 
detecting invalidations of a traversal, and passing data to the 
accelerator when the traversal cache is empty or invalidated. We 
currently implement this functionality using a library of wrapper 
functions around standard data structures, but plan to automate 
this process as part of a high-level synthesis and 
hardware/software partitioning tool, which could theoretically 
allow a user of the framework to utilize any library. 
To specify a traversal, the wrapper functions send the appropriate 
control signals to the FPGA, wait to see if assistance is needed, 
and then begin fetching the data used by the traversal. The library 
uses a different wrapper function for each type of traversal, such 
as an in-order tree traversal, a depth first search of a graph, etc. 
The most challenging task required by the software is to detect 
traversal invalidations. Currently, the framework invalidates the 
cache anytime the data stored in the data structure is changed, and 
also when the traversal changes (e.g. in-order to post-order). 
Detecting changes to the data structure is a challenging problem, 
due to aliasing issues that may exist in the code. To avoid these 
issues, the framework requires that any changes made to the data 
structure be made through the use of the wrapper functions. This 
requirement guarantees that the traversal cache will be invalidated 
for any modification to the data structure. Furthermore, this 
requirement does not restrict the use of aliases outside the 
wrappers because those aliases cannot modify the structure. 
The software library detects changes in the ordering of a traversal 
in the following way. In the simple case that the ordering of the 
traversal is known at compile time, the code simply uses a 
different wrapper function for each type of traversal. However, 
not all traversals follow a path through the data structure that is 
known at compile time. Binary search is an example of this 
problem, where the traversal of the data structure depends on the 
values in both the data structure and the input value. For cases 
where the software library cannot determine invalidation until 
runtime, the accelerator utilizes invalidation logic to dynamically 
check for invalid traversals. This runtime analysis requires extra 
data to be stored in the traversal cache to allow the accelerator to 
determine if the actual traversal differs from the stored traversal. 
If the accelerator invalidates the traversal cache at runtime, the 
accelerator requests assistance from the microprocessor to fetch 
the correct traversal and then restarts execution. 

3.4 Limitations 
The main limitation of the traversal cache framework is that not 
all applications using pointer-based data structures are amenable 
to speedup. To achieve speedup, the application typically must 
have repeated traversals. However, as shown in the experiments 
section, few repetitions are typically needed before the traversal 
cache achieves improvements. In fact, for some computational-
intensive applications, speedup can be obtained even if the 
traversal cache is invalidated for every traversal. 
Another limitation is that the traversal cache must be manually 
created and the specified software library must be used. Ideally, a 

hardware/software partitioning tool could partition the application 
automatically, high-level synthesis could determine the 
appropriate size and amount of traversal caches, and also modify 
the software source code appropriately for use with any data 
structure library. These issues are outside the scope of this paper, 
but we plan to introduce synthesis techniques for traversal caches 
as part of future work. 

4. EXPERIMENTS 
4.1 Experimental Setup 
To evaluate the traversal caches, we implemented the framework 
on the Nallatech H101-PCIXM [16]. This board consists of a 
Xilinx Virtex 4 LX100 FPGA, in addition to 4 SRAM banks. We 
mapped the framework onto this target architecture in the 
following way. The microprocessor is a 3.2 GHz Xeon, and the 
FPGA is the LX100 on the H101-PCXM. All communication 
between the microprocessor and FPGA, which includes the 
software-assisted data stream, control signals, and 
synchronization signals are sent over a PCI-X bus. Control and 
synchronization signals are read from and written to memory 
mapped registers inside of the LX100 using memory map nodes 
provided by Nallatech. The software assisted data stream is 
written into one of the SRAM banks, or alternatively block RAM 
on the LX100 if the traversal is small enough. To test realistic 
traversal sizes, all of our tests utilize the SRAM. Utilizing block 
RAM could potentially improve the reported results due to 
increased memory bandwidth. The traversal cache is also 
implemented by one SRAM bank. Although traversal caches can 
potentially be used for outputs, in this paper the tested examples 
do not require an output cache, and instead write outputs directly 
to an SRAM bank. The invalidation logic was also not required 
for any of the tested examples because we could determine all 
possible invalidations at compile time. The selected examples are 
representative of many FPGA-amenable kernels, which implies 
many examples may not need the invalidation logic. We plan to 
determine of the effects of the invalidation logic as future work.  
To investigate effects of invalidation rate on performance, we do 
not base the invalidation rate on a specific input stream, and 
instead manually test different invalidation rates. This approach 
allows us to test different input possibilities, ranging from the 
worst case to the best case. For each example, we test invalidation 
rates of 1 (invalidate every traversal), 5 (invalidate every 5 
traversals), 10, 20, 40, and 80. 
We evaluated the framework using the following benchmarks, 
which we developed. For each benchmark, we describe the 
pointer-based data structure and justify tested invalidation rates.  
Search scans a linked list of 1 million 16-bit integers and 
determines the number of occurrences of a specified value. The 
FPGA implementation performs 16, 16-bit comparisons and 15 
additions every cycle. The implementation consisted of 3933 lines 
of VHDL and 1409 lines of C code. The invalidation rate for 
search is likely to be low for any application that searches a data 
structure multiple times without changing, such as a database 
application. 
Audio performs convolution of an input signal consisting of 16-bit 
audio samples with a 64 sample impulse response. The data 
structure used by audio is a linked list of audio streams, which 
may likely occur in a digital audio workstation or a video game. 
Repeated traversals are likely since the actual audio stored in 
these applications does not change frequently. The circuit 
implementation performs 64 multiplications and 63 additions 



 

0

5

10

15

20

25

30

35

Search Audio Graphics N-body Avg

Pointer

Array

IR1

IR5

IR10

IR20

IR40

IR80

 

0

10

20

30

40

50

60

70

80

Search Audio Graphics N-body Avg

Pointer

Array

IR1

IR5

IR10

IR20

IR40

IR80

 
      Figure 3: (a) Speedups obtained by the traversal cache framewo
based software (pointer) running on a 3.2 GHz Xeon. Performance o

high invalidation rates (low IR values) typically achieve large sp
implementations to use arrays instead of pointer-based data structur

speedup for the other examples, which suggests traversal cache

 

every cycle, and required 4496 lines of VHDL and 1399 lines of 
C code. 
N-body determines the forces exerted on 100,000 particles for 80 
time steps. The data structure used by n-body is a quad tree, 
which recursively divides the 2-dimensional space that contains 
the particles into small subspaces. N-body performs 8 
multiplications, 2 divides, 2 additions, 2 subtractions, 1 square 
root, and 2 accumulations every cycle. All operations are floating 
point except for the accumulations. We are implementing a 
pipelined floating point accumulator, but currently use a large 
fixed point accumulator with 32 integer bits and 24 fraction bits. 
N-body required 4865 lines of VHDL and 1439 lines of C code. 
The VHDL utilized a floating point multiplier, divider, square 
root, adder, subtracter, float-to-fixed, and fixed-to-float 
component from Xilinx CORE Generator. The quad tree structure 
is normally used by the Barnes-Hut algorithm to reduce the 
complexity of n-body simulations from O(n2) to O(n*lgn). 
However, for our experiments, the circuit implementation 
searches the entire quad tree to avoid inflating the benefits of 
traversal caches compared to an array implementation. Therefore, 
actual execution times using a quad tree, with or without traversal 
caches, is likely better than reported. 
Graphics performs 3-dimensional vertex transformations by 
multiplying 4x4 transformation matrices with 4x1 vertex matrices. 
Graphics uses a list of vertex arrays, where each node of the list 
represents an object to be rendered. The implementation performs 
16 multiplications and 28 additions every cycle. All operations 
are floating point. The implementation used 4166 lines of VHDL 
and 1435 lines of C code, in addition to a floating point multiplier 
and adder from Xilinx CORE Generator. 
For each benchmark, we manually performed hardware/software 
partitioning and then created a custom accelerator for the single 
most computationally-intensive kernel, using the traversal cache 
framework. We specified the entire framework using VHDL, and 
then specified the remainder of the FPGA environment using 
Nallatech DIMEtalk [15], which included the PCI-X interface, 
SRAM memory controllers, and memory map interfaces. We 
synthesized the resulting VHDL using Xilinx ISE 8.1. 
We executed each example at the maximum possible clock 
frequency obtained after placement and routing, which ranged 
from 115 MHz for graphics to 135 MHz for search.  
For all experiments, we compare traversal cache performance to 
software running on a 3.2 GHz Xeon. We compiled each 
benchmark using gcc 3.4.6 with –O3 optimizations to ensure that 
the baseline in the comparisons was as fast as possible. 
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4.2 Speedup Compared to Software 
This section presents performance advantages of the traversal 
cache framework compared to software running on a 3.2 GHz 
Xeon. Figure 3(a) shows speedups obtained by the traversal cache 
compared to pointer-based software (shown as pointer in the 
figure). The figure includes speedups for each invalidation rate 
(abbreviated IR). The figure also shows the performance of 
software using sequential array traversals (shown as array in the 
figure) instead of pointer-based data structure traversals. 
For the search example, only the highest invalidation rate (IR1) 
was slower than the pointer-based software. All other invalidation 
rates achieved large speedup compared to pointer-based software, 
reaching as high as 29x for IR80. Array-based software 
performance was better than the traversal cache framework for all 
invalidation rates under 40. For the IR80 case, the traversal cache 
was 1.3x faster than the software array implementation. 
For audio, all invalidation rates, including IR1, were faster than 
both the pointer-based software implementation and the array 
implementation. Speedup ranged from 6.2x to 8.2x. The reason 
for the increased speedup at higher invalidation rates was because 
audio performed more computation for each piece of data, 
minimizing the effects of transferring the data to the FPGA. 
Graphics achieved similar results, always outperforming the 
pointer and array software implementations, with speedup ranging 
from 1.2x to 6.7x.  
For n-body, the traversal cache framework also outperformed 
software for all invalidation rates. The main difference for this 
example was the lack of speedup increase for lower invalidation 
rates. This difference resulted from a significant amount of 
computation for each piece of data sent to the FPGA, which 
completely dominated the data transfer times. A similar result can 
be seen for the audio example, where the slope of speedup 
increase is less than the other examples. Speedup for n-body was 
8.7x for all invalidation rates compared to pointer-based software, 
and 2.5x compared to array-based software. 

4.3 Speedup after Recoding 
To determine how much improvement could be obtained by using 
arrays within the traversal cache framework instead of pointer-
based data structures, in this section we report the speedups 
assuming a designer were to recode the benchmarks to use arrays. 
Figure 3(b) illustrates the speedup, again compared to pointer-
based software, after recoding. For search, speedup more than 



doubled, reaching 70x for IR80. The increased speedup resulted 
from the significantly slower pointer-based software, which was 
more than 20x slower than the array-based software. We believe 
this performance difference is due to page faults caused by the 
large list size. All other examples achieved almost identical 
performances after being implemented with arrays. This 
surprising result implies that for certain examples, traversal 
caches make pointer-based code just as efficient on FPGAs as 
array-based code – a significant achievement considering the 
traditionally bad performance that has resulted from pointer-based 
structures.   

5. CONCLUSIONS 
In this paper, we introduced the traversal cache framework. By 
caching repeated traversals of pointer-based data structures, 
traversal caches deliver data to custom pipelined datapaths 
implemented in FPGAs faster than previously possible, resulting 
in speedups as high as 29x compared to software execution on a 
3.2 GHz Xeon. Furthermore, for several examples, performance 
was almost identical after recoding to eliminate pointers, which 
implies that traversal caches may often completely hide the 
overhead of pointer-based structures. Although some applications 
with high invalidation rates may not be amenable to traversal 
caches, there are numerous applications that benefit from this 
framework. Furthermore, we showed that even for applications 
with high invalidation rates, traversal caches can achieve 
significant speedup. 
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