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ABSTRACT 

Reconfigurable computing (RC) systems based on FPGAs are 
becoming an increasingly attractive solution to building parallel 
systems of the future.  Applications targeting such systems have 
demonstrated superior performance and reduced energy 
consumption versus their traditional counterparts based on 
microprocessors. However, most of such work has been limited to 
small system sizes. Unlike traditional HPC systems, lack of 
integrated, system-wide, parallel-programming models and 
languages presents a significant design challenge for creating 
applications targeting scalable, reconfigurable HPC systems. In 
this paper, we introduce and investigate a novel programming 
model based on Partitioned Global Address Space (PGAS), which 
simplifies development of parallel applications for such systems. 
The new multilevel PGAS programming model captures the 
unique characteristics of these systems, such as the existence of 
multiple levels of memory hierarchy and heterogeneous 
computation resources. To evaluate this multilevel PGAS model, 
we extend and adapt the SHMEM programming language to 
become what we call SHMEM+, the first known SHMEM library 
enabling coordination between FPGAs and CPUs in a 
reconfigurable, heterogeneous HPC system. Our design of 
SHMEM+ is highly portable and provides peak communication 
bandwidth comparable to vendor-proprietary versions of 
SHMEM. In addition, applications designed with SHMEM+ yield 
improved developer productivity compared to current methods of 
multi-device RC design and achieve a high degree of portability.  

Categories and Subject Descriptors 

D.1.3 [Programming Techniques]: Concurrent Programming – 
parallel programming.  

General Terms 

Design, Languages, Performance 

Keywords 

Reconfigurable computing, parallel programming, programming 
language, programming model, productivity, portability. 

1. INTRODUCTION 
High-performance computing (HPC) is a critical enabling 
technology for the advancement of science and engineering, 

supporting multi-scale simulations and experiments that drive 
breakthroughs in an ever-broadening range of fields.  The field of 
HPC is currently undergoing a major transformation brought on 
by advances in device technologies as well as new generations of 
fixed-logic [1][2][3], reconfigurable-logic [4][5], and/or 
heterogeneous multicore and many-core [2][6][7] devices.  These 
technologies are driving systems to become ever more powerful 
and efficient but unfortunately also more complex and 
demanding, with multiple types and levels of hardware 
parallelism to be understood and exploited. 

A special class of such systems featuring reconfigurable 
computing, based on closely-coupled microprocessors and 
FPGAs, offers an attractive solution for HPC [8][9]. Numerous 
studies have demonstrated that such systems can achieve 
performance improvements ranging from 10× to more than 1000× 
over their microprocessor-based counterparts while concomitantly 
reducing energy consumption. Despite their superior performance, 
RC systems have failed to capture the HPC market, largely 
because of increased application-design complexity. Although 
advances in languages and tools for FPGAs have simplified 
device-level design for FPGAs, system-level design issues have 
largely been unaddressed. Such is the case with communication 
and synchronization between multiple devices in RC systems. 
Unlike traditional HPC systems, lack of integrated, system-wide, 
parallel-programming models and languages has limited most RC 
applications to small systems. The characteristic differences 
between RC systems and traditional HPC systems, such as 
additional levels of memory in the system and different execution 
models of heterogeneous devices present in the system, warrant a 
new programming model which can address these differences. 
Currently, application developers for large-scale RC systems 
employ ad-hoc methods and multiple libraries/APIs to incorporate 
inter- and intra-node communication and synchronization for such 
systems. As a result, the development productivity for scalable, 
parallel RC applications has suffered. 

Although shared-memory models have been prevalent in HPC for 
decades, recently, newer models providing a programmer with a 
partitioned, global address space (PGAS) view for abstraction 
have been gaining popularity, such as Unified Parallel C (UPC) 
[10], SHMEM [11], Co-Array Fortran [12], and Titanium [13]. By 
extending the memory hierarchy to include an additional, higher-
level global memory layer that is partitioned between nodes in the 
system, these languages/libraries allow for explicit or implicit 
one-sided data exchange (i.e. put, get) through reading and writing 
of global variables. Although designed for traditional HPC 
systems, these models have the requisite simplicity, syntax, and 
semantics to meet the needs of coordination amongst FPGA and 
CPU devices in a reconfigurable HPC system. However, these 
models need to be adapted and extended to work with such 
systems. For example, the concept of memory virtualization needs 
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to be extended to abstract the different levels of memory present 
in RC systems.  

In particular, the SHMEM programming model stands out as a 
strong candidate for extending to RC systems due to its innate 
simplicity, low overhead, support for a partitioned global address 
space (PGAS), and emphasis upon explicit, fast one-sided 
communications. However, architectural differences introduced 
by incorporating RC devices in the system warrant re-examination 
of some concepts and semantics traditionally associated with its 
programming model. In this paper, we introduce a multilevel 
PGAS programming model for RC systems, which abstracts the 
details of multiple levels of memory available in the system, and 
presents the designer with a unified view of the system memory. 
Furthermore, we evaluate this model, through a prototype of 
SHMEM+ (i.e. an extended, adapted SHMEM library), the first 
known implementation of SHMEM that enables communication 
and synchronization between FPGAs and CPUs in a scalable, 
reconfigurable HPC system. Using SHMEM+, designers can 
create scalable, parallel applications that execute over a mix of 
microprocessors and FPGAs. The higher level of abstraction 
provided by SHMEM+ can yield significant improvement in 
developer productivity. Concomitantly, for the decomposed tasks 
of a parallel application, developers of FPGA cores can employ 
high-level synthesis tools and languages (e.g. Impulse-C, Carte-C, 
Handel-C, etc.) for creating hardware designs for FPGAs to 
further improve productivity. We analyze the performance of our 
prototype of SHMEM+ and investigate its inherent strengths 
through a case study. 

The remainder of this paper is organized as follows. Section 2 
describes some previous work. Section 3 provides a description of 
the multilevel PGAS programming model. Section 4 gives a 
detailed overview of the design of SHMEM+. In Section 5, 
experimental results are presented and the performance of 
different data-transfer routines available in SHMEM+ is analyzed. 
We also demonstrate a typical usage scenario with a case study of 
a content-based image retrieval application. Finally, Section 6 
summarizes the work with conclusions and future work. 

2. RELATED RESEARCH 
Traditionally, developers of parallel programs have performed 
coordination between tasks using either message-passing libraries 
such as MPI [14] or shared-memory libraries such as OpenMP 
[15]. Recently, languages and libraries that present a partitioned 
global address space (PGAS) to the programmer, such as UPC 
[10] and SHMEM [11], have become more visible and popular. 
These languages provide a simple interface for developers of 
parallel applications through implicit or explicit one-sided data 
transfer functions, while providing comparable performance to 
message-passing libraries as demonstrated in [16]. However, since 
PGAS languages were developed for traditional HPC systems, 
they have been typically limited to homogeneous execution 
contexts of a cluster of microprocessors. 

Owing to the emergence of a plethora of devices that are used for 
application acceleration and are coupled with microprocessors in 
HPC, there has been a quest for exploring parallel-programming 
models [17] that are better suited for such systems. Several 
research groups have recently shown interest in asynchronous 
execution in the PGAS model, leading to Asynchronous PGAS 
(APGAS), which lays the foundation for active-message 
programming and fine-grained concurrency [17]. APGAS also 
provides a framework for data transfer between non-coherent 

memories (DMA), remote atomic operations, and other techniques 
for overlapping computation and communication. APGAS is 
largely tailored towards spawning massively parallel, multi-
threaded kernel computations at run-time, on accelerators such as 
GPUs, but inadequate for FPGAs where kernels are configured on 
the device as hardware engines, often at the beginning of the 
program.  

Other researchers have attempted to build hybrid models using 
multiple models for a system [18]. System-level libraries and 
languages such as MPI and UPC were used for application 
coordination spanning nodes in clusters, and libraries such as 
OpenMP for coordination between tasks within each node. Hybrid 
models require the designer to partition their design into multiple 
levels and acquire expertise with multiple programming models 
and languages, libraries, and tools. By contrast, we attempt to 
abstract these details from the application designer and present an 
integrated programming model and library. In [19], the authors 
extend the UPC programming model to abstract a system of 
microprocessors and accelerators through a two-level hierarchy of 
parallelism. While their work shares the same goal of providing 
application developers with a unified programming model, their 
approach is quite different. In [19], the authors rely on identifying 
and extracting sections of code, specified in a UPC program, 
which are amenable to hardware acceleration and re-direct them 
through a source-to-source translator and a high-level synthesis 
tool to generate hardware designs. Instead of providing a means 
for creating hardware designs, we provide a parallel programming 
model, amenable to HPC systems which have a hierarchy of 
computational devices and memory resources, and leverage the 
efficiency of existing high-level synthesis tools to raise the 
abstraction for device-level design and generate the hardware. 

Recently, much effort has been channeled towards standardizing 
the interface between microprocessors and accelerator devices 
such as FPGAs [20] and GPUs [21]. The focus of these efforts has 
been on the low-level interaction between the accelerator devices 
and x86 processors. The scope of our work is at a higher level and 
complements such efforts, as it can overlay a coordination 
framework on top of such APIs. 

3. MULTILEVEL PGAS MODEL 
Next-generation RC systems will be targeting FPGA devices in 
their system architectures in exotic ways to extract performance, 
ranging from closely coupled, in-socket accelerators to PCI-based 
accelerator cards. Figure 1 depicts an example RC system, where 

 

Figure 1. System architecture of a typical RC machine. 



every node contains a set of processing units (PUs), each a 
microprocessor or FPGA. With FPGA devices and multicore 
CPUs, all within a single node, becoming pervasive in high-end 
computing systems, the existence of multiple levels of 
communication and memory hierarchy is becoming increasingly 
difficult to ignore. There is a need for a parallel-programming 
model that provides application designers with a higher level of 
abstraction, somewhat akin to that provided by the global memory 
layer in PGAS. 

We introduce a multilevel PGAS model that integrates the 
different levels of memory hierarchy in the system, distributed 
within and across multiple nodes, into a partitioned, global 
address space. Figure 2 shows the physical distribution of memory 
components that form the global address space in the system. 
Memory blocks associated with all PUs in the system, irrespective 
of their physical location and hierarchy in the system architecture, 
can form a part of the virtual memory layer and have globally 
unique memory addresses in the system. Memory blocks that do 
not form a part of the global memory can be used by their PUs for 
storing local variables. It should be noted that memory blocks 
shown in Figure 2 correspond to the off-chip memory resources. 
On-chip memory structures of an FPGA such as block RAMs and 
register files are treated as local storage and not exposed as a part 
of PGAS.  Such modeling of local storage is similar to that of 
microprocessor cache and registers, which are hidden from the 
PGAS layer in traditional HPC systems. Both CPUs and FPGAs 
provide interfaces required for the global memory abstraction for 
their corresponding memory blocks. In addition, each program 
instance of a SPMD (single-program, multiple-data) application in 
multilevel PGAS is comprised of multiple tasks, which are 
collectively executed by the PUs in a single node. 

In systems equipped with multiple non-coherent memory blocks 
within a node, DMA operations are often employed for data 
transfer between different memory blocks, which are expensive 
operations and can significantly hamper application performance. 
Multilevel PGAS model requires data transfers between local 
memory components to be explicitly specified by the application 
designer. Having explicit calls for data transfers within a node 
gives more control to the designer and avoids the possibility of 
inefficiencies caused by transparent but expensive transfers which 
are implicitly embedded in the application code. In addition, 
multilevel PGAS model provides the designer with the ability of 
specifying affinity of various application data to specific memory 
components within a node during memory allocation. Therefore, 
the data can be placed in a memory block closer to the processing 
unit that operates on it most frequently. Both these features help in 

attaining higher performance for applications. 

Figure 3 depicts the physical distribution of resources within each 
node and its equivalent logical abstraction provided by the 
multilevel PGAS model (used by SHMEM+). Although the figure 
depicts two processing units per node, one CPU and one FPGA, it 
can be generalized to include any number and variety. As shown 
in Figure 3(a), the global address space, partitioned across 
multiple nodes in the system, is composed of memory blocks 
which are physically distributed across different processing units 
within a node. However, the logical abstraction presented to a 
designer (shown in Figure 3(b)) integrates these physically 
separate memory blocks into a flattened view of the node’s shared 
memory. Thus, application designers do not have to understand 
the distribution of data over the physical memory resources when 
accessing a remote node. 

The PGAS interface, which allows the processing units to access 
different memory blocks in the system, is responsible for 
providing to application designers an abstraction of a single, 
integrated memory block. The physical implementation of the 
interface itself is system-dependent and can be realized in 
different ways by system architects. While each node provides the 
entire functionality required by the PGAS interface, each PU 
within a node is responsible for implementing only a subset of this 
functionality. The distribution of these responsibilities amongst 
the PUs within a node is dictated by their capabilities in the 
system. For example, in our initial study, the CPU provides a 
majority of the SHMEM functionality and the FPGA provides 
assistance for transfers to and from the FPGA’s memory. As 
future work, we intend to investigate feasibility of FPGA-initiated 
transfers, which will require more extensive support from FPGAs. 

 

                                       (a)                                                                                          (b) 

Figure 3. (a) Physical resource layout of a typical RC system, (b) Logical abstraction provided by multilevel PGAS model. 

 

Figure 2. Distribution of memory and system resources in 

multilevel PGAS. 



4. DESIGN OVERVIEW OF SHMEM+ 
Based on this multilevel PGAS programming model, we extend 
the API of SHMEM to become what we call SHMEM+, which 
enables design of parallel applications for reconfigurable HPC 
systems. Using SHMEM+, designers can create highly scalable 
applications that execute over a mix of microprocessors and 
FPGAs. Previous implementations of the SHMEM API have 
targeted specific systems [11][22] and often lacked portability. 
SHMEM+ is built over services provided by Global Address 
Space NETworking (GASNet) from UC Berkeley [23]. GASNet 
is language-independent, communications middleware that 
provides network-independent, high-performance primitives 
tailored for implementing parallel GAS languages. As a result, 
SHMEM+ can be easily ported to systems that are supported by 
GASNet by simply modifying the FPGA interfaces that employ 
vendor-specific APIs. 

Figure 4(a) shows the software architecture of SHMEM+. It 
makes use of GASNet’s Core API, Extended API, and Active 
Message (AM) services. The setup functions, which perform 
memory allocation and other initialization tasks, employ the 
“Core API” services of GASNet. The data transfers to/from the 
CPU memory were built using the “Extended API,” which 

provides direct support for high-level operations such as remote 
memory access. As a result, the SHMEM+ functions that perform 
transfers between two CPUs can be implemented by simply 
providing wrappers around the underlying GASNet functions. 
Since transfers to/from FPGA memory are not directly supported 
by underlying GASNet functions, they were developed using the 
AM service in conjunction with FPGA interfaces that we 
developed for our platform (more details about our experimental 
testbed are provided in Section 5). Figure 4(b) shows the sequence 
of steps involved in a transfer from FPGA memory using Active 
Messages. The message handlers shown in the figure employ 
FPGA_read/write functions, which we developed using the 
FPGA-board vendor’s API to communicate with FPGA memory. 
Due to overhead incurred by AM services and data access to/from 
the FPGA board, communication with FPGA memory results in 
higher latency and lower bandwidth when compared to CPU 
memory transfers. 

Our initial design of SHMEM+ as described in this paper focuses 
on a subset of baseline functions selected from the entire API 
function set of SHMEM.  In this paper, we discuss 10 baseline 
functions shown in Table 1, which include five setup functions, 
four point-to-point messaging calls, and a collective 
synchronization routine.  Some of these functions can be easily 

 

                                  (a)                                                                                                         (b) 

Figure 4. (a) Software architecture of SHMEM+, (b) Data transfer example using Active Messages. 

Table 1. Baseline functions supported in prototype version of SHMEM+. 

 Function  SHMEM+ Call Type Purpose 

 Initialization  shmem_init  Setup Initializes a process to use the SHMEM library 

 Communication Id  my_pe  Setup Provides a unique node number for each process 

 Communication size  num_pes  Setup Provides the number of PEs in the system 

 Finalize  shmem_finalize  Setup De-allocates resources and gracefully terminates 

 Malloc   shmalloc  Setup Allocates memory for shared variables 

 Get  shmem_int_g  P2P Reads single element from the remote node’s shared 
space 

 Put  shmem_int_p  P2P Writes single element from the remote node’s shared 
space 

 Get  shmem_getmem  P2P Reads any contiguous data type from a remote PE 

 Put  shmem_putmem  P2P Writes any contiguous data type to a remote PE 

 Barrier Synchronization  shmem_barrier_all  Collective Synchronizes all the nodes together 



extended to support other SHMEM functions; such is the case for 
single-element and contiguous data-transfer routines.  In our 
initial version, we focus only on blocking and synchronous 
communications, which is the dominant mode in many 
applications.  Blocking and synchronous communications require 
corresponding communication calls to complete data transfer 
before returning control to calling application. Therefore, our 
preliminary baseline does not include some other SHMEM 
functions which are commonly employed with asynchronous 
communication, such as fence, quiet, etc. These additional 
functions are left for future work. 

It is our objective to keep the SHMEM+ interface consistent with 
previous SHMEM implementations. However, the functionality 
provided by SHMEM+ has been extended to incorporate support 
for FPGAs and provide multilevel PGAS abstraction. Thus, 
SHMEM+ functions perform these extra tasks in addition to the 
ones performed by traditional SHMEM routines. For example, the 
shmem_init call performs FPGA initialization (i.e. configuration 
of FPGA with the required hardware design) and FPGA memory-
management operations, concomitant to CPU memory-segment 
initialization and management as performed by the traditional 
shmem_init function. The data-transfer functions (variations of 
shmem_get/put) perform exchanges between two CPUs or 
between a CPU and an FPGA. Based on the target memory 
address specified in the function, SHMEM+ identifies whether the 
target location resides in CPU or FPGA memory and adopts 
appropriate means of transferring the data. In addition, transfers to 
both remote and local FPGAs can be performed through the same 
interface, eliminating the need of multiple APIs. Without 
SHMEM+, application developers must orchestrate the transfers 
through multiple libraries based on the location and type of the 
target device. The memory allocation routine (shmalloc), which 
allocates memory for shared data variables from the shared 
address space, has been modified slightly to allow users to specify 
the affinity of any data to a particular memory block in the 
system.. For example, a set of data that is operated upon by an 
FPGA can be specified to be allocated on FPGA memory which, 
as explained in Section 3, can be beneficial for application 
performance. The application developer conveys this information 
by specifying the “type” parameter (type = 0 for CPU memory, 1 
for FPGA memory) in the SHMEM+ function call.  

5. EXPERIMENTAL RESULTS 
Our experimental testbed consists of four server nodes connected 
via QsNetII interconnect technology from Quadrics. Each node is 

a Linux server comprised of an AMD 2GHz Opteron 246 
processor and equipped with a GiDEL PROCStar-III FPGA 
board. The FPGA board features four Altera Stratix-III EP3SE260 
FPGAs, each with two external DDR memory modules of 2GB 
and one on-board 256MB DDR2 SDRAM bank. The FPGA board 
sits in a PCI-express ×8 slot. For our experiments and analysis, we 
currently employ only one FPGA per board, though our design 
can be easily extended to more FPGAs with minor modifications. 
In this section, we present the performance obtained for various 
memory transfers with SHMEM+ and compare it against the 
performance obtained with the vendor-proprietary, CPU-only 
version of SHMEM provided by Quadrics for QsNet systems. 

5.1 Performance Analysis 
Figure 5(a) shows performance of point-to-point communication 
routines in SHMEM+ for transfers between two CPUs. Bulk 
communication routines such as shmem_getmem and 
shmem_putmem attain a peak throughput of over 850MB/s for all 
such transfers. The bandwidth obtained with SHMEM+ calls, for 
transfers between two CPUs, is comparable to the proprietary 
version of SHMEM available from Quadrics. The SHMEM+ 
routines for these transfers benefit from direct support provided 
by GASNet and thus incur minimal overheads. The bandwidth is 
observed to saturate at approximately 890MB/s for data transfers 
larger than 320KB.  

Figure 5(b) shows performance of data transfers between a CPU 
and an FPGA using SHMEM+ routines. The “Local PUT” and 
“Local GET” labels represent the bandwidth of data transfers 
between a host CPU and its local FPGA on the same node. The 
bandwidth of such local transfers is specific to the particular 
FPGA board and depends upon a variety of factors associated 
with interconnect(s) between CPU and FPGA, efficiency of the 
communication controller on the board, etc. Most RC systems 
offer a higher bandwidth for read operation from an FPGA (FPGA 
to CPU) when compared to write operation (CPU to FPGA). 
Similarly, our system yields a peak bandwidth of over 300MB/s 
for local put operations (CPU to FPGA) and approximately 
1000MB/s for local get operations (FPGA to CPU). The “Remote 
PUT” and “Remote GET” labels in Figure 5(b) represent the 
bandwidth of data transfers between a CPU and an FPGA on 
different node. As expected, the bandwidth for such transfers is 
observed to be lower than the bandwidth attained for local 
transfers; peak bandwidth observed is under 200MB/s. These 
transfers were implemented using GASNet’s medium AM service, 
which enforces a maximum packet size of 63KB and causes 
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Figure 5. Bandwidth of point-to-point routines for transfers between (a) CPU and CPU, (b) CPU and FPGA. 



substantial degradation in performance. An additional 
performance penalty is incurred while transferring these small 
data packets to the FPGA memory over PCIe. From the results 
presented in this section, it can be observed that SHMEM+ 
performs well for transfers between two CPUs and reasonably 
well between a CPU and an FPGA. 

5.2 Case Study 
To exemplify the programming philosophy of SHMEM+, we 
present the design of a Content-Based Image Retrieval (CBIR) 
application. CBIR is a common application in computer vision 
and consists of searching a large database of digital images for the 
ones that are visually similar to a given query image, where the 
search is based on contents of the image. The content in this 
context can be one of the several features present in the image, 
such as colors, shapes, textures, or any other information that can 
be derived from the image. CBIR has been widely adopted in 
many domains such as biomedicine, military, commerce, 
education, and Web image classification and searching. Each 
image in a CBIR system is represented by a feature vector, which 
is based on characteristics of the image as cited above. Similarity 
between a query image and the set of images in the database is 
determined by measuring similarity between their feature vectors. 
The processes of determining the feature vector and analyzing 
images for similarities are often the most computationally 
intensive stages in any CBIR system [24]. There are various forms 
of parallelism available in the application that can be exploited by 
RC systems to accelerate the search process [25]. 

Our implementation presented here employs a technique based on 
auto-correlogram of color components [26], where the feature 
vector is based on color information in the image. A correlogram 
of an image corresponds to a table where the rows are indexed by 

color pairs ),( ji cc  such that the d -th column in row 

),( ji cc stores the probability of finding a pixel of color 
jc at a 

distance d from a pixel of color 
ic in the image. For the case of 

auto-correlogram, the table only consists of rows where 
ji cc = . 

In this paper, we use a modified version of auto-correlogram, 
which employs an absolute count of the occurrences of a pixel of 
color 

ic instead of the probability of such an event. Similarity 

between two images is determined by calculating the Sum of 
Absolute Differences (SAD) between their feature vectors. 

The basic parallel algorithm employed in our experiments 
distributes the set of images to be searched over a set of nodes and 
allows multiple processing units to evaluate these images 
simultaneously, as shown in Figure 6. The steps involved in our 
parallel implementation are as follows: 

1. All nodes perform initialization using shmem_init, which 
also configures the FPGA with the desired bitfile (specified 
as a command line parameter). 

2. CPUs on all nodes read their subset of input images from a 
storage device (such as a local hard disk or a network storage 
device) along with the feature vector of the query image. 

3. CPUs then each transfer a subset of the set of images to local 
FPGA memory using the shmem_putmem function, for 
processing in reconfigurable hardware. 

4. CPUs initiate the execution on their local FPGAs through a 
“GO” signal. CPUs and FPGAs on all nodes compute feature 
vectors and similarity measures for their subset of images in 
parallel. 

5. FPGAs signal the completion of execution to local CPUs 
through a “DONE” signal. Once computation on CPUs and 
FPGAs on each node is complete, all nodes synchronize 
using shmem_barrier_all. 

6. Finally, Node 0 reads similarity values from all CPUs and 
FPGAs using the shmem_getmem function. Results are then 
sorted in decreasing order of similarity. 

In addition to software parallelism described in the algorithm 
above, hardware designs for FPGAs in our system instantiate 
multiple computational kernels and operate on five images in 
parallel. Figure 7 shows the execution times and the speedup 
versus a serial software baseline for different system sizes. Our 
experiments were conducted for an image size of 128×128, with 
the search database consisting of 800 images. Since the sorting 
process involved in Step 5 is the same for the serial baseline and 
forms an insignificant part of the execution time, it was omitted 
from the execution times recorded in our experiments. 

A linear speedup is obtained for the parallel software designs, as 
each node now operates over a subset of the set of images. When 
RC components on each node are employed in addition to 
microprocessors, over 30× speedup is obtained with four nodes. 
The FPGAs were able to process images at a much faster rate than 
the CPUs leading to significant improvement in application 
performance. As SHMEM+ is further optimized for PCIe and 
even faster intra-server interconnects, such as HyperTransport 
(HT) and Quick Path Interconnect (QPI), the performance of 
SHMEM+ applications is likely to improve even further. 

More importantly, SHMEM+ provides application developers 
with a parallel-programming model that enables productive and 
portable design of scalable RC applications, as demonstrated 
through the case study in this section. SHMEM+ simplifies the 
design process for such applications by raising the level of 
abstraction, somewhat akin to methods employed for traditional 
parallel applications. Without SHMEM+, application developers 
must employ multiple libraries with varying APIs to incorporate 
communication amongst a cluster of host CPUs and to facilitate 
coordination between host CPUs and FPGAs. In addition, any 
communication with an FPGA on a remote node will have to be 
explicitly routed by the developer, through the host CPU on that 
remote node. With SHMEM+, the developer is oblivious to such 
details and exposed to a higher level of abstraction, which can 
lead to significant improvement in developer productivity.  Since 

 

Figure 6. Processing steps involved in our parallel algorithm 

for CBIR using SHMEM+ 



SHMEM+ applications do not employ any vendor-specific APIs 
for interaction with FPGAs, applications are highly portable. As 
long as the SHMEM+ library can be supported on a target RC 
system, any application designed with SHMEM+ can execute on 
it without requiring changes to the application source code. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a parallel-programming model and a 
communication library for scalable, heterogeneous, reconfigurable 
systems. The multilevel PGAS model introduced in this paper is 
able to capture key characteristics of RC systems, such as 
different levels of memory hierarchy and differences in the 
execution model of heterogeneous devices present in the system. 
The existence of such a programming model will enable 
development of scalable, parallel applications for reconfigurable 
HPC systems. 

Based on the multilevel PGAS programming model, we presented 
the design of SHMEM+ (an extended SHMEM library), the first 
known version of SHMEM that enables designers to create 
scalable applications that execute over a mix of microprocessors 
and FPGAs. Initial results from experiments demonstrate that 
transfers between two CPUs achieve high bandwidth, comparable 
to the vendor-proprietary version of SHMEM on the same system. 
Transfers to FPGA memory incur extra penalties, and therefore 
achieve lower peak bandwidth. Our case study demonstrated the 
simplified design process involved with SHMEM+ for developing 
scalable RC applications. The design steps involved in developing 
applications with SHMEM+ are very similar to traditional 
methods for development of parallel applications. CBIR 
application developed using SHMEM+ achieved a speedup of 
over 30× when the RC components on each node were employed 
in addition to the microprocessors. More importantly, the higher 
level of abstraction provided by SHMEM+ to the application 
developer leads to significant improvement in productivity. In 
addition, by hiding details of vendor-specific FPGA 
communication from the user, SHMEM+ creates highly portable 
applications. 

For future work on portability and scalability studies, we plan to 
port and evaluate SHMEM+ on our new Novo-G machine, an RC 
system comprised of twenty-four compute nodes, each equipped 
with four large, top-of-the-line FPGAs and a quad-core 
microprocessor. Also, we plan to enhance the communication 

model by investigating mechanisms for FPGA-initiated transfers. 
In addition, we intend to investigate, develop, and evaluate tools 
to support performance analysis for SHMEM+ applications. 
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