
Bridging Parallel and Reconfigurable Computing
with Multilevel PGAS and SHMEM+

V. Aggarwal, A. George, K. Yalamanchili, C. Yoon, H. Lam, G. Stitt

NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida, Gainesville, FL 32611-6200

{aggarwal, george, yalamanchili, yoon, hlam, gstitt}@chrec.org

ABSTRACT

Reconfigurable computing (RC) systems based on FPGAs are
becoming an increasingly attractive solution to building parallel
systems of the future. Applications targeting such systems have
demonstrated superior performance and reduced energy
consumption versus their traditional counterparts based on
microprocessors. However, most of such work has been limited to
small system sizes. Unlike traditional HPC systems, lack of
integrated, system-wide, parallel-programming models and
languages presents a significant design challenge for creating
applications targeting scalable, reconfigurable HPC systems. In
this paper, we introduce and investigate a novel programming
model based on Partitioned Global Address Space (PGAS), which
simplifies development of parallel applications for such systems.
The new multilevel PGAS programming model captures the
unique characteristics of these systems, such as the existence of
multiple levels of memory hierarchy and heterogeneous
computation resources. To evaluate this multilevel PGAS model,
we extend and adapt the SHMEM programming language to
become what we call SHMEM+, the first known SHMEM library
enabling coordination between FPGAs and CPUs in a
reconfigurable, heterogeneous HPC system. Our design of
SHMEM+ is highly portable and provides peak communication
bandwidth comparable to vendor-proprietary versions of
SHMEM. In addition, applications designed with SHMEM+ yield
improved developer productivity compared to current methods of
multi-device RC design and achieve a high degree of portability.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming –
parallel programming.

General Terms

Design, Languages, Performance

Keywords

Reconfigurable computing, parallel programming, programming
language, programming model, productivity, portability.

1. INTRODUCTION
High-performance computing (HPC) is a critical enabling
technology for the advancement of science and engineering,

supporting multi-scale simulations and experiments that drive
breakthroughs in an ever-broadening range of fields. The field of
HPC is currently undergoing a major transformation brought on
by advances in device technologies as well as new generations of
fixed-logic [1][2][3], reconfigurable-logic [4][5], and/or
heterogeneous multicore and many-core [2][6][7] devices. These
technologies are driving systems to become ever more powerful
and efficient but unfortunately also more complex and
demanding, with multiple types and levels of hardware
parallelism to be understood and exploited.

A special class of such systems featuring reconfigurable
computing, based on closely-coupled microprocessors and
FPGAs, offers an attractive solution for HPC [8][9]. Numerous
studies have demonstrated that such systems can achieve
performance improvements ranging from 10× to more than 1000×
over their microprocessor-based counterparts while concomitantly
reducing energy consumption. Despite their superior performance,
RC systems have failed to capture the HPC market, largely
because of increased application-design complexity. Although
advances in languages and tools for FPGAs have simplified
device-level design for FPGAs, system-level design issues have
largely been unaddressed. Such is the case with communication
and synchronization between multiple devices in RC systems.
Unlike traditional HPC systems, lack of integrated, system-wide,
parallel-programming models and languages has limited most RC
applications to small systems. The characteristic differences
between RC systems and traditional HPC systems, such as
additional levels of memory in the system and different execution
models of heterogeneous devices present in the system, warrant a
new programming model which can address these differences.
Currently, application developers for large-scale RC systems
employ ad-hoc methods and multiple libraries/APIs to incorporate
inter- and intra-node communication and synchronization for such
systems. As a result, the development productivity for scalable,
parallel RC applications has suffered.

Although shared-memory models have been prevalent in HPC for
decades, recently, newer models providing a programmer with a
partitioned, global address space (PGAS) view for abstraction
have been gaining popularity, such as Unified Parallel C (UPC)
[10], SHMEM [11], Co-Array Fortran [12], and Titanium [13]. By
extending the memory hierarchy to include an additional, higher-
level global memory layer that is partitioned between nodes in the
system, these languages/libraries allow for explicit or implicit
one-sided data exchange (i.e. put, get) through reading and writing
of global variables. Although designed for traditional HPC
systems, these models have the requisite simplicity, syntax, and
semantics to meet the needs of coordination amongst FPGA and
CPU devices in a reconfigurable HPC system. However, these
models need to be adapted and extended to work with such
systems. For example, the concept of memory virtualization needs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HPRCTA'09, November 15, 2009, Portland, Oregon
Copyright © 2009 ACM 978-1-60558-721-9/09/11... $10.00

to be extended to abstract the different levels of memory present
in RC systems.

In particular, the SHMEM programming model stands out as a
strong candidate for extending to RC systems due to its innate
simplicity, low overhead, support for a partitioned global address
space (PGAS), and emphasis upon explicit, fast one-sided
communications. However, architectural differences introduced
by incorporating RC devices in the system warrant re-examination
of some concepts and semantics traditionally associated with its
programming model. In this paper, we introduce a multilevel
PGAS programming model for RC systems, which abstracts the
details of multiple levels of memory available in the system, and
presents the designer with a unified view of the system memory.
Furthermore, we evaluate this model, through a prototype of
SHMEM+ (i.e. an extended, adapted SHMEM library), the first
known implementation of SHMEM that enables communication
and synchronization between FPGAs and CPUs in a scalable,
reconfigurable HPC system. Using SHMEM+, designers can
create scalable, parallel applications that execute over a mix of
microprocessors and FPGAs. The higher level of abstraction
provided by SHMEM+ can yield significant improvement in
developer productivity. Concomitantly, for the decomposed tasks
of a parallel application, developers of FPGA cores can employ
high-level synthesis tools and languages (e.g. Impulse-C, Carte-C,
Handel-C, etc.) for creating hardware designs for FPGAs to
further improve productivity. We analyze the performance of our
prototype of SHMEM+ and investigate its inherent strengths
through a case study.

The remainder of this paper is organized as follows. Section 2
describes some previous work. Section 3 provides a description of
the multilevel PGAS programming model. Section 4 gives a
detailed overview of the design of SHMEM+. In Section 5,
experimental results are presented and the performance of
different data-transfer routines available in SHMEM+ is analyzed.
We also demonstrate a typical usage scenario with a case study of
a content-based image retrieval application. Finally, Section 6
summarizes the work with conclusions and future work.

2. RELATED RESEARCH
Traditionally, developers of parallel programs have performed
coordination between tasks using either message-passing libraries
such as MPI [14] or shared-memory libraries such as OpenMP
[15]. Recently, languages and libraries that present a partitioned
global address space (PGAS) to the programmer, such as UPC
[10] and SHMEM [11], have become more visible and popular.
These languages provide a simple interface for developers of
parallel applications through implicit or explicit one-sided data
transfer functions, while providing comparable performance to
message-passing libraries as demonstrated in [16]. However, since
PGAS languages were developed for traditional HPC systems,
they have been typically limited to homogeneous execution
contexts of a cluster of microprocessors.

Owing to the emergence of a plethora of devices that are used for
application acceleration and are coupled with microprocessors in
HPC, there has been a quest for exploring parallel-programming
models [17] that are better suited for such systems. Several
research groups have recently shown interest in asynchronous
execution in the PGAS model, leading to Asynchronous PGAS
(APGAS), which lays the foundation for active-message
programming and fine-grained concurrency [17]. APGAS also
provides a framework for data transfer between non-coherent

memories (DMA), remote atomic operations, and other techniques
for overlapping computation and communication. APGAS is
largely tailored towards spawning massively parallel, multi-
threaded kernel computations at run-time, on accelerators such as
GPUs, but inadequate for FPGAs where kernels are configured on
the device as hardware engines, often at the beginning of the
program.

Other researchers have attempted to build hybrid models using
multiple models for a system [18]. System-level libraries and
languages such as MPI and UPC were used for application
coordination spanning nodes in clusters, and libraries such as
OpenMP for coordination between tasks within each node. Hybrid
models require the designer to partition their design into multiple
levels and acquire expertise with multiple programming models
and languages, libraries, and tools. By contrast, we attempt to
abstract these details from the application designer and present an
integrated programming model and library. In [19], the authors
extend the UPC programming model to abstract a system of
microprocessors and accelerators through a two-level hierarchy of
parallelism. While their work shares the same goal of providing
application developers with a unified programming model, their
approach is quite different. In [19], the authors rely on identifying
and extracting sections of code, specified in a UPC program,
which are amenable to hardware acceleration and re-direct them
through a source-to-source translator and a high-level synthesis
tool to generate hardware designs. Instead of providing a means
for creating hardware designs, we provide a parallel programming
model, amenable to HPC systems which have a hierarchy of
computational devices and memory resources, and leverage the
efficiency of existing high-level synthesis tools to raise the
abstraction for device-level design and generate the hardware.

Recently, much effort has been channeled towards standardizing
the interface between microprocessors and accelerator devices
such as FPGAs [20] and GPUs [21]. The focus of these efforts has
been on the low-level interaction between the accelerator devices
and x86 processors. The scope of our work is at a higher level and
complements such efforts, as it can overlay a coordination
framework on top of such APIs.

3. MULTILEVEL PGAS MODEL
Next-generation RC systems will be targeting FPGA devices in
their system architectures in exotic ways to extract performance,
ranging from closely coupled, in-socket accelerators to PCI-based
accelerator cards. Figure 1 depicts an example RC system, where

Figure 1. System architecture of a typical RC machine.

every node contains a set of processing units (PUs), each a
microprocessor or FPGA. With FPGA devices and multicore
CPUs, all within a single node, becoming pervasive in high-end
computing systems, the existence of multiple levels of
communication and memory hierarchy is becoming increasingly
difficult to ignore. There is a need for a parallel-programming
model that provides application designers with a higher level of
abstraction, somewhat akin to that provided by the global memory
layer in PGAS.

We introduce a multilevel PGAS model that integrates the
different levels of memory hierarchy in the system, distributed
within and across multiple nodes, into a partitioned, global
address space. Figure 2 shows the physical distribution of memory
components that form the global address space in the system.
Memory blocks associated with all PUs in the system, irrespective
of their physical location and hierarchy in the system architecture,
can form a part of the virtual memory layer and have globally
unique memory addresses in the system. Memory blocks that do
not form a part of the global memory can be used by their PUs for
storing local variables. It should be noted that memory blocks
shown in Figure 2 correspond to the off-chip memory resources.
On-chip memory structures of an FPGA such as block RAMs and
register files are treated as local storage and not exposed as a part
of PGAS. Such modeling of local storage is similar to that of
microprocessor cache and registers, which are hidden from the
PGAS layer in traditional HPC systems. Both CPUs and FPGAs
provide interfaces required for the global memory abstraction for
their corresponding memory blocks. In addition, each program
instance of a SPMD (single-program, multiple-data) application in
multilevel PGAS is comprised of multiple tasks, which are
collectively executed by the PUs in a single node.

In systems equipped with multiple non-coherent memory blocks
within a node, DMA operations are often employed for data
transfer between different memory blocks, which are expensive
operations and can significantly hamper application performance.
Multilevel PGAS model requires data transfers between local
memory components to be explicitly specified by the application
designer. Having explicit calls for data transfers within a node
gives more control to the designer and avoids the possibility of
inefficiencies caused by transparent but expensive transfers which
are implicitly embedded in the application code. In addition,
multilevel PGAS model provides the designer with the ability of
specifying affinity of various application data to specific memory
components within a node during memory allocation. Therefore,
the data can be placed in a memory block closer to the processing
unit that operates on it most frequently. Both these features help in

attaining higher performance for applications.

Figure 3 depicts the physical distribution of resources within each
node and its equivalent logical abstraction provided by the
multilevel PGAS model (used by SHMEM+). Although the figure
depicts two processing units per node, one CPU and one FPGA, it
can be generalized to include any number and variety. As shown
in Figure 3(a), the global address space, partitioned across
multiple nodes in the system, is composed of memory blocks
which are physically distributed across different processing units
within a node. However, the logical abstraction presented to a
designer (shown in Figure 3(b)) integrates these physically
separate memory blocks into a flattened view of the node’s shared
memory. Thus, application designers do not have to understand
the distribution of data over the physical memory resources when
accessing a remote node.

The PGAS interface, which allows the processing units to access
different memory blocks in the system, is responsible for
providing to application designers an abstraction of a single,
integrated memory block. The physical implementation of the
interface itself is system-dependent and can be realized in
different ways by system architects. While each node provides the
entire functionality required by the PGAS interface, each PU
within a node is responsible for implementing only a subset of this
functionality. The distribution of these responsibilities amongst
the PUs within a node is dictated by their capabilities in the
system. For example, in our initial study, the CPU provides a
majority of the SHMEM functionality and the FPGA provides
assistance for transfers to and from the FPGA’s memory. As
future work, we intend to investigate feasibility of FPGA-initiated
transfers, which will require more extensive support from FPGAs.

 (a) (b)

Figure 3. (a) Physical resource layout of a typical RC system, (b) Logical abstraction provided by multilevel PGAS model.

Figure 2. Distribution of memory and system resources in

multilevel PGAS.

4. DESIGN OVERVIEW OF SHMEM+
Based on this multilevel PGAS programming model, we extend
the API of SHMEM to become what we call SHMEM+, which
enables design of parallel applications for reconfigurable HPC
systems. Using SHMEM+, designers can create highly scalable
applications that execute over a mix of microprocessors and
FPGAs. Previous implementations of the SHMEM API have
targeted specific systems [11][22] and often lacked portability.
SHMEM+ is built over services provided by Global Address
Space NETworking (GASNet) from UC Berkeley [23]. GASNet
is language-independent, communications middleware that
provides network-independent, high-performance primitives
tailored for implementing parallel GAS languages. As a result,
SHMEM+ can be easily ported to systems that are supported by
GASNet by simply modifying the FPGA interfaces that employ
vendor-specific APIs.

Figure 4(a) shows the software architecture of SHMEM+. It
makes use of GASNet’s Core API, Extended API, and Active
Message (AM) services. The setup functions, which perform
memory allocation and other initialization tasks, employ the
“Core API” services of GASNet. The data transfers to/from the
CPU memory were built using the “Extended API,” which

provides direct support for high-level operations such as remote
memory access. As a result, the SHMEM+ functions that perform
transfers between two CPUs can be implemented by simply
providing wrappers around the underlying GASNet functions.
Since transfers to/from FPGA memory are not directly supported
by underlying GASNet functions, they were developed using the
AM service in conjunction with FPGA interfaces that we
developed for our platform (more details about our experimental
testbed are provided in Section 5). Figure 4(b) shows the sequence
of steps involved in a transfer from FPGA memory using Active
Messages. The message handlers shown in the figure employ
FPGA_read/write functions, which we developed using the
FPGA-board vendor’s API to communicate with FPGA memory.
Due to overhead incurred by AM services and data access to/from
the FPGA board, communication with FPGA memory results in
higher latency and lower bandwidth when compared to CPU
memory transfers.

Our initial design of SHMEM+ as described in this paper focuses
on a subset of baseline functions selected from the entire API
function set of SHMEM. In this paper, we discuss 10 baseline
functions shown in Table 1, which include five setup functions,
four point-to-point messaging calls, and a collective
synchronization routine. Some of these functions can be easily

 (a) (b)

Figure 4. (a) Software architecture of SHMEM+, (b) Data transfer example using Active Messages.

Table 1. Baseline functions supported in prototype version of SHMEM+.

 Function SHMEM+ Call Type Purpose

 Initialization shmem_init Setup Initializes a process to use the SHMEM library

 Communication Id my_pe Setup Provides a unique node number for each process

 Communication size num_pes Setup Provides the number of PEs in the system

 Finalize shmem_finalize Setup De-allocates resources and gracefully terminates

 Malloc shmalloc Setup Allocates memory for shared variables

 Get shmem_int_g P2P Reads single element from the remote node’s shared
space

 Put shmem_int_p P2P Writes single element from the remote node’s shared
space

 Get shmem_getmem P2P Reads any contiguous data type from a remote PE

 Put shmem_putmem P2P Writes any contiguous data type to a remote PE

 Barrier Synchronization shmem_barrier_all Collective Synchronizes all the nodes together

extended to support other SHMEM functions; such is the case for
single-element and contiguous data-transfer routines. In our
initial version, we focus only on blocking and synchronous
communications, which is the dominant mode in many
applications. Blocking and synchronous communications require
corresponding communication calls to complete data transfer
before returning control to calling application. Therefore, our
preliminary baseline does not include some other SHMEM
functions which are commonly employed with asynchronous
communication, such as fence, quiet, etc. These additional
functions are left for future work.

It is our objective to keep the SHMEM+ interface consistent with
previous SHMEM implementations. However, the functionality
provided by SHMEM+ has been extended to incorporate support
for FPGAs and provide multilevel PGAS abstraction. Thus,
SHMEM+ functions perform these extra tasks in addition to the
ones performed by traditional SHMEM routines. For example, the
shmem_init call performs FPGA initialization (i.e. configuration
of FPGA with the required hardware design) and FPGA memory-
management operations, concomitant to CPU memory-segment
initialization and management as performed by the traditional
shmem_init function. The data-transfer functions (variations of
shmem_get/put) perform exchanges between two CPUs or
between a CPU and an FPGA. Based on the target memory
address specified in the function, SHMEM+ identifies whether the
target location resides in CPU or FPGA memory and adopts
appropriate means of transferring the data. In addition, transfers to
both remote and local FPGAs can be performed through the same
interface, eliminating the need of multiple APIs. Without
SHMEM+, application developers must orchestrate the transfers
through multiple libraries based on the location and type of the
target device. The memory allocation routine (shmalloc), which
allocates memory for shared data variables from the shared
address space, has been modified slightly to allow users to specify
the affinity of any data to a particular memory block in the
system.. For example, a set of data that is operated upon by an
FPGA can be specified to be allocated on FPGA memory which,
as explained in Section 3, can be beneficial for application
performance. The application developer conveys this information
by specifying the “type” parameter (type = 0 for CPU memory, 1
for FPGA memory) in the SHMEM+ function call.

5. EXPERIMENTAL RESULTS
Our experimental testbed consists of four server nodes connected
via QsNetII interconnect technology from Quadrics. Each node is

a Linux server comprised of an AMD 2GHz Opteron 246
processor and equipped with a GiDEL PROCStar-III FPGA
board. The FPGA board features four Altera Stratix-III EP3SE260
FPGAs, each with two external DDR memory modules of 2GB
and one on-board 256MB DDR2 SDRAM bank. The FPGA board
sits in a PCI-express ×8 slot. For our experiments and analysis, we
currently employ only one FPGA per board, though our design
can be easily extended to more FPGAs with minor modifications.
In this section, we present the performance obtained for various
memory transfers with SHMEM+ and compare it against the
performance obtained with the vendor-proprietary, CPU-only
version of SHMEM provided by Quadrics for QsNet systems.

5.1 Performance Analysis
Figure 5(a) shows performance of point-to-point communication
routines in SHMEM+ for transfers between two CPUs. Bulk
communication routines such as shmem_getmem and
shmem_putmem attain a peak throughput of over 850MB/s for all
such transfers. The bandwidth obtained with SHMEM+ calls, for
transfers between two CPUs, is comparable to the proprietary
version of SHMEM available from Quadrics. The SHMEM+
routines for these transfers benefit from direct support provided
by GASNet and thus incur minimal overheads. The bandwidth is
observed to saturate at approximately 890MB/s for data transfers
larger than 320KB.

Figure 5(b) shows performance of data transfers between a CPU
and an FPGA using SHMEM+ routines. The “Local PUT” and
“Local GET” labels represent the bandwidth of data transfers
between a host CPU and its local FPGA on the same node. The
bandwidth of such local transfers is specific to the particular
FPGA board and depends upon a variety of factors associated
with interconnect(s) between CPU and FPGA, efficiency of the
communication controller on the board, etc. Most RC systems
offer a higher bandwidth for read operation from an FPGA (FPGA
to CPU) when compared to write operation (CPU to FPGA).
Similarly, our system yields a peak bandwidth of over 300MB/s
for local put operations (CPU to FPGA) and approximately
1000MB/s for local get operations (FPGA to CPU). The “Remote
PUT” and “Remote GET” labels in Figure 5(b) represent the
bandwidth of data transfers between a CPU and an FPGA on
different node. As expected, the bandwidth for such transfers is
observed to be lower than the bandwidth attained for local
transfers; peak bandwidth observed is under 200MB/s. These
transfers were implemented using GASNet’s medium AM service,
which enforces a maximum packet size of 63KB and causes

(a)

(b)

Figure 5. Bandwidth of point-to-point routines for transfers between (a) CPU and CPU, (b) CPU and FPGA.

substantial degradation in performance. An additional
performance penalty is incurred while transferring these small
data packets to the FPGA memory over PCIe. From the results
presented in this section, it can be observed that SHMEM+
performs well for transfers between two CPUs and reasonably
well between a CPU and an FPGA.

5.2 Case Study
To exemplify the programming philosophy of SHMEM+, we
present the design of a Content-Based Image Retrieval (CBIR)
application. CBIR is a common application in computer vision
and consists of searching a large database of digital images for the
ones that are visually similar to a given query image, where the
search is based on contents of the image. The content in this
context can be one of the several features present in the image,
such as colors, shapes, textures, or any other information that can
be derived from the image. CBIR has been widely adopted in
many domains such as biomedicine, military, commerce,
education, and Web image classification and searching. Each
image in a CBIR system is represented by a feature vector, which
is based on characteristics of the image as cited above. Similarity
between a query image and the set of images in the database is
determined by measuring similarity between their feature vectors.
The processes of determining the feature vector and analyzing
images for similarities are often the most computationally
intensive stages in any CBIR system [24]. There are various forms
of parallelism available in the application that can be exploited by
RC systems to accelerate the search process [25].

Our implementation presented here employs a technique based on
auto-correlogram of color components [26], where the feature
vector is based on color information in the image. A correlogram
of an image corresponds to a table where the rows are indexed by

color pairs),(ji cc such that the d -th column in row

),(ji cc stores the probability of finding a pixel of color
jc at a

distance d from a pixel of color
ic in the image. For the case of

auto-correlogram, the table only consists of rows where
ji cc = .

In this paper, we use a modified version of auto-correlogram,
which employs an absolute count of the occurrences of a pixel of
color

ic instead of the probability of such an event. Similarity

between two images is determined by calculating the Sum of
Absolute Differences (SAD) between their feature vectors.

The basic parallel algorithm employed in our experiments
distributes the set of images to be searched over a set of nodes and
allows multiple processing units to evaluate these images
simultaneously, as shown in Figure 6. The steps involved in our
parallel implementation are as follows:

1. All nodes perform initialization using shmem_init, which
also configures the FPGA with the desired bitfile (specified
as a command line parameter).

2. CPUs on all nodes read their subset of input images from a
storage device (such as a local hard disk or a network storage
device) along with the feature vector of the query image.

3. CPUs then each transfer a subset of the set of images to local
FPGA memory using the shmem_putmem function, for
processing in reconfigurable hardware.

4. CPUs initiate the execution on their local FPGAs through a
“GO” signal. CPUs and FPGAs on all nodes compute feature
vectors and similarity measures for their subset of images in
parallel.

5. FPGAs signal the completion of execution to local CPUs
through a “DONE” signal. Once computation on CPUs and
FPGAs on each node is complete, all nodes synchronize
using shmem_barrier_all.

6. Finally, Node 0 reads similarity values from all CPUs and
FPGAs using the shmem_getmem function. Results are then
sorted in decreasing order of similarity.

In addition to software parallelism described in the algorithm
above, hardware designs for FPGAs in our system instantiate
multiple computational kernels and operate on five images in
parallel. Figure 7 shows the execution times and the speedup
versus a serial software baseline for different system sizes. Our
experiments were conducted for an image size of 128×128, with
the search database consisting of 800 images. Since the sorting
process involved in Step 5 is the same for the serial baseline and
forms an insignificant part of the execution time, it was omitted
from the execution times recorded in our experiments.

A linear speedup is obtained for the parallel software designs, as
each node now operates over a subset of the set of images. When
RC components on each node are employed in addition to
microprocessors, over 30× speedup is obtained with four nodes.
The FPGAs were able to process images at a much faster rate than
the CPUs leading to significant improvement in application
performance. As SHMEM+ is further optimized for PCIe and
even faster intra-server interconnects, such as HyperTransport
(HT) and Quick Path Interconnect (QPI), the performance of
SHMEM+ applications is likely to improve even further.

More importantly, SHMEM+ provides application developers
with a parallel-programming model that enables productive and
portable design of scalable RC applications, as demonstrated
through the case study in this section. SHMEM+ simplifies the
design process for such applications by raising the level of
abstraction, somewhat akin to methods employed for traditional
parallel applications. Without SHMEM+, application developers
must employ multiple libraries with varying APIs to incorporate
communication amongst a cluster of host CPUs and to facilitate
coordination between host CPUs and FPGAs. In addition, any
communication with an FPGA on a remote node will have to be
explicitly routed by the developer, through the host CPU on that
remote node. With SHMEM+, the developer is oblivious to such
details and exposed to a higher level of abstraction, which can
lead to significant improvement in developer productivity. Since

Figure 6. Processing steps involved in our parallel algorithm

for CBIR using SHMEM+

SHMEM+ applications do not employ any vendor-specific APIs
for interaction with FPGAs, applications are highly portable. As
long as the SHMEM+ library can be supported on a target RC
system, any application designed with SHMEM+ can execute on
it without requiring changes to the application source code.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a parallel-programming model and a
communication library for scalable, heterogeneous, reconfigurable
systems. The multilevel PGAS model introduced in this paper is
able to capture key characteristics of RC systems, such as
different levels of memory hierarchy and differences in the
execution model of heterogeneous devices present in the system.
The existence of such a programming model will enable
development of scalable, parallel applications for reconfigurable
HPC systems.

Based on the multilevel PGAS programming model, we presented
the design of SHMEM+ (an extended SHMEM library), the first
known version of SHMEM that enables designers to create
scalable applications that execute over a mix of microprocessors
and FPGAs. Initial results from experiments demonstrate that
transfers between two CPUs achieve high bandwidth, comparable
to the vendor-proprietary version of SHMEM on the same system.
Transfers to FPGA memory incur extra penalties, and therefore
achieve lower peak bandwidth. Our case study demonstrated the
simplified design process involved with SHMEM+ for developing
scalable RC applications. The design steps involved in developing
applications with SHMEM+ are very similar to traditional
methods for development of parallel applications. CBIR
application developed using SHMEM+ achieved a speedup of
over 30× when the RC components on each node were employed
in addition to the microprocessors. More importantly, the higher
level of abstraction provided by SHMEM+ to the application
developer leads to significant improvement in productivity. In
addition, by hiding details of vendor-specific FPGA
communication from the user, SHMEM+ creates highly portable
applications.

For future work on portability and scalability studies, we plan to
port and evaluate SHMEM+ on our new Novo-G machine, an RC
system comprised of twenty-four compute nodes, each equipped
with four large, top-of-the-line FPGAs and a quad-core
microprocessor. Also, we plan to enhance the communication

model by investigating mechanisms for FPGA-initiated transfers.
In addition, we intend to investigate, develop, and evaluate tools
to support performance analysis for SHMEM+ applications.

7. ACKNOWLEDGMENTS
This work was supported in part by the I/UCRC Program of the
National Science Foundation under Grant No. EEC-0642422. The
authors gratefully acknowledge vendor equipment and/or tools
provided by GiDEL that helped make this work possible. The
authors also thank Rafael Garcia, M.S. student, in our lab for his
contributions to this work.

8. REFERENCES
[1] Ambric, Inc. 2008. Ambric technology backgrounder.

http://www.ambric.com/technology/technology-
overview.php.

[2] F- Chen, T., Raghavan, R., Dale, J. N., and Iwata, E. 2007.
Cell broadband engine architecture and its first
implementation: a performance view. IBM Journal of
Research and Development 51, 5, 559-572.

[3] ClearSpeed Technology PLC. 2007. CSX600 Architecture.
Whitepaper. ClearSpeed Technology PLC.

[4] Altera Corp. 2008. Stratix IV Device Handbook. Altera
Corp.

[5] Xilinx, Inc. 2008. Virtex-5 Family Overview. Xilinx, Inc.
[6] IBM Corp.2008. PowerXCell 8i Processor Specifications.

IBM Corp.
[7] Tilera Corp. 2008. TILE64 Processor Product Brief. Tilera

Corp.
[8] SRC Computers, Inc. 2009. MAPstation workstations.

www.srccomp.com/products/mapstation.asp, (accessed on
July 12, 2009).

[9] XtremeData, Inc. 2009. In-Socket Accelerators.
http://www.xtremedatainc.com/index.php?option=com_
content&view=article&id=109&Itemid=170, (accessed on
July 12, 2009).

[10] Carlson, W. W., Draper, J. M., Culler, D. E., Yelick, K.,
Brooks, E., and Warren, K. 1999. Introduction to UPC and
language specification. University of California-Berkeley.
Technical Report: CCS-TR-99-157, 1999.

[11] SHMEM website. http://docs.cray.com/books/004-2518-
002/html-004-2518-002/z826920364 dep.html, (accessed on
July 12, 2009).

(a)

(b)

Figure 7. Performance comparison of parallel CBIR application designed with SHMEM+. Software designs involve only CPU

devices whereas RC designs involve both CPUs and FPGAs on each node. (a) Execution time of different designs, (b) Speedup

versus a serial software baseline for different designs.

[12] Numrich, B. and Reid, J. 1998. Co-Array Fortran for Parallel
Programming. ACM Fortran Forum, 17, 2, (1998), pp. 1–31.

[13] Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B.,
Krishnamurthy, A., Hilfinger, P., Graham, S., Gay, D.,
Colella, P., and Aiken, A. 1998. Titanium: A High-
Performance Java Dialect. Workshop on Java for High-
Performance Network Computing (June 1998), Las Vegas,
Nevada.

[14] MPI website. http://www.mcs.anl.gov/research/projects/mpi/,
(accessed on July 12, 2009).

[15] Open MP website. http://openmp.org/wp/, (accessed on July
12, 2009).

[16] Nishtala, R., Hargrove, P.H., Bonachea, D.O. and Yelick,
K.A. 2009. Scaling communication-intensive applications on
BlueGene/P using one-sided communication and overlap.
IEEE International Parallel & Distributed Processing
Symposium (May 23-29, 2009). pp.1-12.

[17] Workshop on Asynchrony in the PGAS Programming
Model. http://research.ihost.com/apgas09/, (accessed on July
12, 2009).

[18] Farreras, M., Marjanovic, V., Ayguade, E., and Labarta, J.
2009. Gaining asynchrony by using hybrid UPC/SMPSs.
Workshop on Asynchrony in the PGAS Programming Model
(June 2009), Yorktown Heights, NY.

[19] El-Ghazawi, T., Serres, O., Bahra, S., Huang, M. and El-
Araby, E. 2008. Parallel Programming of High-Performance
Reconfigurable Computing Systems with Unified Parallel C.
Proc. of Reconfigurable Systems Summer Institute (July 7-9,
2008) RSSI 2008. Urbana, Illinois.

[20] OpenFPGA GenAPI version 0.4 Draft For Comment. 2009
http://www.openfpga.org/pages/Standards.aspx, (accessed
July 12, 2009).

[21] OpenCL 1.0 Specification. 2009. http://www.khronos.org/
registry/cl/specs/opencl-1.0.43.pd, (accessed July 12, 2009).

[22] Intro_shmem - Introduction to the SHMEM programming
model. http://docs.sgi.com/library/tpl/ cgi-
bin/getdoc.cgi?coll=linux&db=man&fname=/usr/share/catm
an/man3/intro_shmem.3.html&srch= intro_shmem, (website
accessed July 12, 2009).

[23] Bonachea, D. and Jeong, J. 2002. GASNet: A Portable High-
Performance Communication Layer for Global Address-
Space Languages. CS258 Parallel Computer Architecture
Project, Spring 2002.

[24] Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. 2006.
Feature Extraction, Foundations and Applications. Springer,
2006.

[25] Skarpathiotis, C. and Dimond, K. R. 2004. Hardware
Implementation of Content Based Image Retrieval
Algorithm. Springer LNCS 3203, pp. 1165-1167.

[26] Huang, J., Kumar, S.R., Mitra, M., and Zhu, W.J. 1997.
Image indexing using color correlograms. Proc. of IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (1997). San Juan, Puerto Rico. pp. 762-
768.

[27] Huang, J., Kumar, S.R., Mitra, M., and Zhu, W.J. 1998.
Spatial color indexing and applications. Proc. of sixth
International Conference on Computer Vision(1998),
Bombay, India. pp. 602-607.

[28] Ojala, T., Rautiainen, M., Matinmikko, E. and Aittola, M.
2001. Semantic Image Retrieval with HSV correlograms.
Proc. of twelfth Scandinavian Conference on Image Analysis
(2001). Bergen, Norway. pp. 621-627.

