
F2-09: Intermediate Fabrics
Presented by: James Coole

April 13, 2009

Overview

Placement and routing (PAR) is slow on existing fine-
grained FPGAs

Implement a coarse-grain reconfigurable
fabric on top of the FPGA

• device-independent VHDL
• implemented on the device using existing

tools (ex. Quartus, ISE, etc.)

Intermediate Fabric

+

!

÷

"

Design Netlist

Intermediate Fabric

User design implemented on top of
coarse-grain (intermediate) fabric

+

!

÷

"

Design Netlist

Intermediate Fabric

Custom PAR to Intermediate Fabric (IF)
is considerably faster

• coarse-grained means smaller solution
space for PAR and prevents netlist size
explosion after mapping

• early results suggest as much as 600x
speedup compared to ISE

Abstract multiple devices as a single IF

Abstract different devices as the same IF

Enable partial reconfiguration without device support

by hosting multiple
IFs on the device

by using an IF with multiple
configuration chains

Implementation

Fabric Structure

currently exploring FPGA-like, island-style meshes

!"#$%&#%'()

*+,-.

*+,-//

0"$123/ 0"$1234

*+,-5

0"$1236

*+,-/)

!"#$%&#%'(7

*+,-/4

!"#$%&#%'(8

*+,-/6

!"#$%&#%'(9

*+,-/7

!"#$%&#%'(:

*+,-/8

!"#$%&#%'(.

*+,-/9

!"#$%&#%'(5

*+,-/:

!"#$%&#%'(/)

*+,-/.

!"#$%&#%'(//

*+,-/5

;<123/4 ;<123/6 ;<123/7
;<123/8

=>#,?2#@A#BC

;<123/9

=>#,?2#@(D$C

;<123/:

=>#,?2#@'<C

E+,-)

E+,-4

E+,-/

E+,-6

E+,-7 E+,-8

E+,-9 E+,-: pads: signals in/out of
the fabric

nodes: adders,
multipliers, etc.connection boxes:

connects nodes to
channel tracks

switch boxes: connects
tracks in one channel
to tracks in another

tracks: n-bit busses

Configuration
Configuration is accomplished by setting the value of
registers spread throughout fabric

• registers in nodes are node-specific but similar to FPGA nodes
(ex. LUTs and IO select in CLBs)

• registers in switch boxes and connection boxes are similar to
their FPGA counterparts, for the same topology

Configuration at the level of Tracks
• unlike wires, signals can only have a single source, so...
• multiple sources MUXed down to a single sink
• configuration registers drive MUXes

Like FPGAs, configuration registers are chained together
and configured by shifting in a bitstream

Tracks
Combinatorial loops exist for some MUX select values

• ISE, Quartus, etc. can’t implement the fabric with the loops intact
• can’t simulate with zero-delay loops (limited to slow post-PAR)
• currently, we break the loops by inserting latches before sink

register

source_1
source_2

...
source_n

sink

1

N

Mapping, PAR
Mapping, placement, and routing problems are similar to
same problems in FPGAs

Currently...
• Mapping – one-to-one
• Placement – VPR
• Routing – PathFinder

Cost

Area Overhead
reduction in

resources available
to user design

Clock Overhead
reduction in

achievable clock
rate of user design

+

Cause: FPGA resources left
unused by the IF

Make sure IFs provided are as big
as possible for the device
• area can be maximized automatically

by a fabric-generating tool

Area Overhead

Cause: Mismatch between mix of
node types in IF and cell types in
netlist

Provide a variety of application-
specialized IFs so good matches
are usually available
• hand-design a library based on

identification and analysis of
application domains (ex. DSP, block
ciphers, bioinformatics, etc.)

• automatically generate based on
analysis of design

Area Overhead

Area Overhead
Cause: Resources used by logic in IF, but not necessary in
direct implementation

• logic implementing routing resources
• reconfiguration logic

Don’t count resources that wouldn’t have been used by
direct implementation anyway

Minimizing Cost

Minimizing Area Overhead
Study the area impact of properties of the fabric routing
resources

• using a script to generate and map a bunch of fabrics, varying
different properties to assess their impact on area

Study the impact of the same properties on routability
• need a method of assessing routability

• Benchmarks (used to assess PAR algorithms) exist for traditional FPGA
fabrics, but not for coarse-grain fabrics

• Test on a set of randomly-generated netlists? (over a distribution of
connectedness, heterogeneity, etc.)

...and strike a balance between area and routability

Area Results: Example

Logic Utilization:
 Total Number Slice Registers: 35,798 out of 98,304 36%
 Number used as Flip Flops: 7,622
 Number used as Latches: 28,176
 Number of 4 input LUTs: 68,307 out of 98,304 69%
Logic Distribution:
 Number of occupied Slices: 42,894 out of 49,152 87%
 Number of Slices containing only related logic: 42,894 out of 42,894 100%
 Number of Slices containing unrelated logic: 0 out of 42,894 0%
 *See NOTES below for an explanation of the effects of unrelated logic
Total Number of 4 input LUTs: 68,307 out of 98,304 69%
 Number of bonded IOBs: 300 out of 768 39%
 Number of BUFG/BUFGCTRLs: 1 out of 32 3%
 Number used as BUFGs: 1
 Number used as BUFGCTRLs: 0
 Number of DSP48s: 81 out of 96 84%

Total equivalent gate count for design: 693,994
Additional JTAG gate count for IOBs: 14,400
Peak Memory Usage: 740 MB
Total REAL time to MAP completion: 2 mins 27 secs
Total CPU time to MAP completion: 2 mins 27 secs

9x9, 4 tracks per channel, 16-bit granularity

Example (from XST)

Area Results: Fabric Size

Area Results: Track Density

Area Results: Granularity

Area Results: Long Tracks

Area Results: Pending
Other parameters

• variable track density: different tracks count per channel in
different locations in the fabric

• connection box flexibility
• # and location of connection boxes
• # of adjacent nodes connected

Tool Demo

