
Bridging Parallel and Reconfigurable Bridging Parallel and Reconfigurable

Computing with Computing with

Multilevel PGAS and SHMEM+Multilevel PGAS and SHMEM+

VikasVikas AggarwalAggarwal

Alan D. George

Kishore Yalamanchalli

Changil Yoon

Herman Lam

Greg Stitt

HPRCTA 2009HPRCTA 2009

30 September 2009

NSF CHREC Center

ECE Department, University of Florida

OutlineOutline

� Introduction

� Motivations

� Background

� Approach

� Multilevel PGAS model� Multilevel PGAS model

� SHMEM+

� Experimental Testbed and Results

� Performance benchmarking

� Case study: content-based image recognition (CBIR)

� Conclusions & Future Work

2

MotivationsMotivations
� RC systems offer much superior

performance

� 10x to 1000x higher application

speed, lower energy consumption

� Characteristic differences from

traditional HPC systems

� Multiple levels of memory hierarchy

� Heterogeneous execution contexts

� Lack of integrated, system-wide,

parallel-programming models

� HLLs for RC do not address

scalability/multi-node designs

� Existing parallel models insufficient;

fail to address needs of RC systems

� Productivity for scalable, parallel,

RC applications very low

3

BackgroundBackground

� Traditionally HPC applications developed using

� Message-passing models, e.g. MPI, PVM, etc.

� Shared-memory models, e.g. OpenMP, etc.

� More recently, PGAS models, e.g. UPC, SHMEM, etc.
� Extend memory hierarchy to include high-level global

memory layer, partitioned between multiple nodes

� PGAS has common goals & concepts � PGAS has common goals & concepts

� Requisite syntax, and semantics to meet needs of
coordination for reconfigurable HPC systems

� SHMEM: Shared MEMory comm. library

� However, needs adaptation and extension for

reconfigurable HPC systems

� Introduce multilevel PGAS and SHMEM+

4

PGAS: Partitioned, Global Address Space

P

G

A

S

Background: SHMEMBackground: SHMEM

Shared and local variablesShared and local variables

in SHMEMin SHMEM

� Based on SPMD; easier to program in than MPI (or PVM)

Why program using SHMEMWhy program using SHMEM

5

� Based on SPMD; easier to program in than MPI (or PVM)
� Low latency, high bandwidth one-sided data transfers (puts and gets)
� Provides synchronization mechanisms

� Barrier

� Fence, quiet

� Provides efficient collective communication
� Broadcast

� Collection

� Reduction

Background: SHMEMBackground: SHMEM

1. #include <stdio.h>

2. #include <shmem.h>

3. #include <intrinsics.h>

4.

6. int me, npes, i;

7. int *source, *dest;

8. main()

9. {

15. /* Initialize and send on PE 1 */

16. if(me == 1) {

17. for(i=0; i<8; i++) source[i] = i+1;

18. /* put source data at PE1 to dest at PE0*/

Array copy exampleArray copy example

6

9. {

10. shmem_init();

11. /* Get PE information */

12. me = my_pe();

13. source = shmalloc(4*8);

14. dest = shmalloc(4*8);

18. /* put source data at PE1 to dest at PE0*/

19. shmem_putmem(dest, source, 8*sizeof(dest[0]), 0);

20. }

21. /* Make sure the transfer is complete */

22. shmem_barrier_all();

23.

24. /* Print from the receiving PE */

25. if(me == 0) {

26. printf(" DEST ON PE 0:");

27. for(i=0; i<8; i++)

28. printf(" %d%c", dest[i], (i<7) ? ',' : '\n');

29. }}

Challenges/IssuesChallenges/Issues
� Next-generation HPC systems

� Multi-core CPUs, FPGA devices, Cell, etc.

� Multiple levels becoming increasingly

visible for comm., memory

� Challenges involved in
providing PGAS abstraction

� Semantics (PGAS, SPMD) in

future computing systems

CPU cores
Main

Memory

Mem Mem Mem Mem

Homogeneous

System Architecture

Heterogeneous

Node Architecture

System architecture of System architecture of

a typical RC machinea typical RC machine

future computing systems

� Traditional models/semantics fail

� Redefine meaning & structure in multilevel heterogeneous system

� What part of system arch. (node, device, core) is each SPMD task?

� Where does PGAS exists in multitier memory arch.?

� Interface abstraction

� How do different computational resources provide abstraction for PGAS?

7

System Architecture

SPMD: Single Program Multiple Data

Approach Approach –– Model 1 Model 1
� Each processing unit (PU) in a node executes a

separate task of SPMD application
� SPMD tasks translated to logically equivalent operations in

different programming paradigms

� PGAS interface on each task presents a logically
homogenous system view
� PUs physically heterogeneous; e.g. CPUs, FPGAs, etc.

� Challenges:

PU-1

PU-2 M

Independent tasks
of parallel application

Network

M PU-1

PU-2 M
M

SPMD

Application� Challenges:
� PUs need to support complete functionality of its task

� Provide PGAS interface

� Account for different execution contexts

� e.g. Notion & access patterns of data memory in CPUs &
FPGAs are very different

� Devices require independent access to network resources

� Inefficient utilization of computing resources

� FPGAs built for specific functionality

Mapping &

Translation

Application

PU1
(e.g. FPGA)

PU2
(e.g. CPU)

MEM

Parts of global
memory

PGAS Interface

MEM

Application tasks

8

PU-1

PU-2 M

Network

M PU-1

PU-2 M
M

Independent tasks

Approach Approach –– Model 2Model 2

� Multiple PUs per node collectively execute a task

� SPMD task HW/SW partitioned across computing

resources within a node

� PGAS interface allows homogeneous system view

� Goal is to presents logically unified memory abstraction

� Shared memory physically split across

multiple PUs in every node
SPMD

Application
Logical resource Logical resource

� Challenges:

� Providing virtual/logical unified abstraction

of memory to users

� Hide details of actual/physical distribution

of resources

� Distribute responsibilities of PGAS interface

over multiple PUs in a node

9

Application

Mapping &

Translation

PU2

(e.g. FPGA)

PU1

(e.g. CPU)

MEM MEM

PGAS Interface

PGAS

Physical resource layoutPhysical resource layout

Logical resource Logical resource
abstractionabstraction

MultilevelMultilevel PGASPGAS
Network

Mem

CPU

Mem Mem

CPU

Mem Mem

PGAS

Mem

Node 1 Node N

Distribution of Distribution of

resources in resources in

multilevelmultilevel PGASPGAS

10

� Model 2 seems to make most sense for RC systems
� Integrates different levels of memory hierarchy into a single, partitioned, global

address space

� Each task of SPMD application executes over a mix of CPUs and FPGAs

FPGA FPGA FPGA FPGA…

MultilevelMultilevel PGAS (contd.)PGAS (contd.)

IntraIntra--node view: Abstraction provided by node view: Abstraction provided by multilevelmultilevel PGASPGAS

� Simplified logical abstraction to developer

� PGAS physically distributed, but logically integrated

� PUs collectively provide PGAS interface and its functionality

� Additional significant features:

� Affinity of data to memory blocks

� Explicit transfers between local memories

11

IntraIntra--node view: Abstraction provided by node view: Abstraction provided by multilevelmultilevel PGASPGAS

SHMEM+SHMEM+

� SHMEM stands out as a promising candidate
amongst PGAS-based languages/libraries

� Simple, lightweight, function-based, fast one-sided comm.

� Growth in interest in HPC community

� SHMEM+: First known SHMEM library that allows coordination between

Extended SHMEM for next-gen., heterogeneous,
reconfigurable HPC systems

� SHMEM+: First known SHMEM library that allows coordination between
CPUs and FPGAs

� Enables design of scalable RC applications without sacrificing productivity

� SHMEM+ is built over services provided by GASNet middleware from UC
Berkeley and LBNL
� GASNet is a lightweight, network-independent, language-independent, communication

middleware

� As a result, SHMEM+ offers high-degree of portability

12

GASNet: Global Address Space Networking

SHMEM+ Software ArchitectureSHMEM+ Software Architecture

� Various GASNet services are employed to provide underlying
communication

� Setup functions based on GASNet Core API

� Data transfer to/from remote CPU’s memory employs GASNet Extended API

� Benefit from direct support for such high-level operations in GASNet

� Data transfer to/from remote FPGA’s memory employs Active Message (AM)

services

� Message handlers for AMs use FPGA vendor’s APIs to communicate with FPGA

board

13

SHMEM+: FPGA dataSHMEM+: FPGA data--transfertransfer

Handshake involved in Handshake involved in

transfers from remote FPGA transfers from remote FPGA

� All transfers to/from FPGA memory initiated by CPU (currently)
� Based on medium AM’s request-response transactions

� Message handlers employ FPGA_read/write functions

� Wrap vendor specific API to communicate with FPGA board into more generic read/write
functions

� Packetization required for large data transfers

� FPGA transfers expected to have higher lat. & lower BW compared to CPU transfers

� FPGA-initiated transfers? (focus of future work)

� Provide hardware engines to allow HDL applications to initiate transfers

� Engines could interact with CPU to perform transfers over network

14

SHMEM+ Baseline FunctionsSHMEM+ Baseline Functions
Function SHMEM Call Type Purpose

Initialization shmem_init Setup Initializes a process to use SHMEM library

Communication rank my_pe Setup Provides a unique node number for each process

Communication size num_pes Setup Provides the number of PEs in the system

Finalize shmem_finalize Setup De-allocates resources and gracefully terminates

Malloc shmalloc Setup Allocates memory for shared variables

Get shmem_int_g P2P Read single integer element from remote/local PE

Put shmem_int_p P2P Write single integer element from remote /local PE

� Focus first on basic functionality
� 10 functions (5 setup, 4 point-to-point, 1 collective)

� Focus on blocking communications (dominant mode in most applications)

� Current emphasis on CPU-initiated data transfers

15

Get shmem_getmem P2P Read any contiguous data type from a remote/local PE

Put shmem_putmem P2P Write any contiguous data type to a remote/local PE

Barrier Synchronization shmem_barrier_all Collective Synchronize all the nodes together.

SHMEM+ InterfaceSHMEM+ Interface
� Objective: keep interface simple, familiar

� Extend functionality where needed

� e.g. shmem_init(…)

� Performs FPGA initialization and FPGA memory management

� No change in user interface

� Data transfer routines
� Transfer to both local and remote FPGA through same interface

int main ()

{

shmem_init(…);

char *x = shmalloc (…);

16

void *shmalloc(size_t sz, int type)

Type: 0=CPU/1=FPGA, etc.
void *shmalloc(size_t sz)

� Transfer to both local and remote FPGA through same interface

� Minor modifications

� e.g. shmalloc(…)
� Allows developers to specify affinity to memory blocks

� Developers oblivious to physical location of variables

� Variable lookup table maintains location of each variable

� Memory management tables

� Maintains information about remote node’s CPU and FPGA memory

SharedShared--Memory ManagementMemory Management

CPU Memory
Segment Table

Segment Addr. Allocated
Abstract representation of memory Abstract representation of memory

management scheme adopted in SHMEM+ management scheme adopted in SHMEM+

17

Struct var_table {

unsigned long addr;

int type; //0=CPU, 1=FPGA

}

Addr Type

0xEC45 0

0xF100 1

… …

a

b

Shared
Variables

ShmemApp.c

int main ()

{

a=(int*)shmalloc(

sizeof(int),0);

b=(int*)shmalloc(

sizeof(int),1);

…
}

FPGA Memory
Table

Segment Addr. Allocated

Node 0

Node 1

…

Node 0

Node 1

…

struct shmem_meminfo

{

int numsegs;

/* CPU Memory */

gasnet_seginfo_t *sinfos;

long *alloced;

/* FPGA Memory*/

fpga_seginfo_t

*fpga_sinfos;

long *fpga_alloced;

}

Base Addr. Allocated

management scheme adopted in SHMEM+ management scheme adopted in SHMEM+

Experimental ResultsExperimental Results

� Experimental testbed

� Four server nodes connected via QsNetII interconnect
technology from Quadrics

� Each node: AMD 2GHz Opteron 246 processor and
a GiDEL PROCStar-III FPGA board in a PCI-e ×8 slot

� Each FPGA board: four Altera Stratix-III EP3SE260 FPGAs, each
with two external DDR memory modules of 2GB and one on-board with two external DDR memory modules of 2GB and one on-board
256MB DDR2 SDRAM bank

� We currently employ only one FPGA per board, though our design is
extensible to more

18

SHMEM+: PerformanceSHMEM+: Performance

SHMEM+: Prototype of our extended
SHMEM over GASNet

SHMEM : Proprietary version of
SHMEM over Quadrics (CPU-only)

� Performance on par with proprietary, vendor version of SHMEM
� Benefit from direct support provided by GASNet

� Minimal overheads

� Throughput peaks at ~ 890 MB/s

19

Transfers between two CPUs Transfers between two CPUs

SHMEM+: Performance (contd.)SHMEM+: Performance (contd.)

Local :Transfers between a host CPU and its

local FPGA on the same node

Remote :Transfers between a CPU and an

FPGA on different node

All cases are CPU-initiated transfers

� Throughput peaks above 1GB/s for CPU read (get) from its local FPGA

� Lower performance for local writes and remote transfers

� Performance of transfers to/from FPGA dependent on FPGA board
� Interconnect between CPU and FPGA (e.g. PCIe, PCI-X, PCI, HT, QPI, etc.)

� Efficiency of communication controller on FPGA

� Higher throughput for read ops; common characteristic for most RC systems

20

Transfers between CPU and FPGA Transfers between CPU and FPGA

Case Study: CBIR ApplicationCase Study: CBIR Application
� Search a database of images for ones that are visually similar to input

image

� Widely used in biomedicine, military, commerce, education, web image
classification and many more.

Image

Database

Query imageQuery image

21

CBIR: Content-Based Image Recognition

Pictures courtesy of www.immense.com

Database

ResultsResults

Case Study: CBIR AlgorithmCase Study: CBIR Algorithm

Node 0 Node N-1

Query Image

1

Database

Processing

Read set of input images and

feature vector of query image

Transfer a subset of images to

FPGA using shmem_putmem,

for hardware acceleration

22

…

1

57

Similarity
results

All PUs compute feature

vectors and similarity values

All nodes synchronize using

shmem_barrier_all

Node 0, reads results from all the PUs

Using shmem_getmem, and sorts

them based on similarity values

CBIR: ResultsCBIR: Results
SW design: CPU devices only

RC design: Both CPU and FPGA devices

� Over 30× speedup using FPGA and CPU devices vs. serial S/W design

� More importantly,

� SHMEM+ simplified design of scalable, parallel RC apps.

� Integrated view of system, high level of abstraction led to increased productivity

� Also enhances application portability: vendor-specific APIs are hidden

23

Performance of parallel CBIR Performance of parallel CBIR

application with SHMEM+application with SHMEM+

Conclusions & Future WorkConclusions & Future Work
� Multilevel PGAS programming model stands out as promising

candidate for reconfigurable HPC

� High-level abstraction of multilevel PGAS improves productivity

� SHMEM+: First version of SHMEM that allows coordination

between CPUs and FPGAs

� Enables development of scalable, parallel RC applications� Enables development of scalable, parallel RC applications

� Provides mechanisms akin to traditional methods for parallel app. development

� Improves application portability

� Future Work

� Scalability study on new Novo-G RC supercomputer

� Investigate and explore FPGA-initiated transfers

� Develop tools to support performance analysis for SHMEM+ apps

24

AcknowledgementsAcknowledgements

� NSF I/UCRC Program (Grant EEC-0642422), CHREC members

� Special thanks to ORNL for their ideas and support that made this

work possible

� Rafael Garcia, M.S. Student, CHREC lab

� GiDEL for their tools and equipment

25

QuestionsQuestions

