
Warp Processors
ROMAN LYSECKY
University of Arizona
and
GREG STITT AND FRANK VAHID*
University of California, Riverside
*Also with the Center for Embedded Computer Systems at UC Irvine
__

We describe a new processing architecture, known as a warp processor, that utilizes a field-programmable gate
array (FPGA) to improve the speed and energy consumption of a software binary executing on a
microprocessor. Unlike previous approaches that also improve software using an FPGA but do so using a
special compiler, a warp processor achieves those improvements completely transparently and operates from a
standard binary. A warp processor dynamically detects the binary’s critical regions, re-implements those
regions as a custom hardware circuit in the FPGA, and replaces the software region by a call to the new
hardware implementation of that region. While not all benchmarks can be improved using warp processing,
many can, and the improvements are dramatically better than achievable by more traditional architecture
improvements. The hardest part of warp processing is that of dynamically re-implementing code regions on an
FPGA, requiring partitioning, decompilation, synthesis, placement, and routing tools, all having to execute with
minimal computation time and data memory so as to coexist on-chip with the main processor. We describe our
results of developing a warp processor. We developed a custom FPGA fabric specifically designed to enable
lean place and route tools, and we developed extremely fast and efficient versions of partitioning,
decompilation, synthesis, technology mapping, placement, and routing. Warp processors achieve overall
application speedups of 6.3X with energy savings of 66% across a set of embedded benchmark applications. We
further show that our tools utilize an acceptably small amount of computation and memory, far less than
traditional tools. Our work illustrates the feasibility and potential of warp processing, and one can foresee the
possibility of warp processing becoming a feature in a variety of computing domains, including desktop, server,
and embedded applications.

Categories and Subject Descriptors: C.1.3 [Processor Architectures] Other Architecture Styles - Adaptable
Architectures; C.3 [Computer Systems Organization] Special-Purpose and Application-Based Systems -
Real-time and Embedded Systems
General Terms: Design, Performance, Experimentation
Additional Key Words and Phrases: Warp processors, hardware/software partitioning, FPGA, configurable
logic, just-in-time (JIT) compilation, dynamic optimization, hardware/software codesign.
__

1. INTRODUCTION

Extensive research over the past two decades has demonstrated the benefits that often can
be obtained by re-implementing a software application’s critical regions, or critical
kernels, as a custom circuit coprocessor on a field-programmable gate array (FPGA).
While many products today feature such coprocessors on FPGAs alongside a
microprocessor [Altera 2006; Christensen 2004; D.H. Brown Associates 2004; Morris
__

This research was supported by the National Science Foundation (CCR-0203829), the Semiconductor Research
Corporation (2003-HJ-1046G).
Authors' addresses: Roman Lysecky, Department of Electrical and Computer Engineering, University of
Arizona, AZ, 85721; Greg Stitt, Department of Computer Science and Engineering, University of California,
Riverside, CA 92521; Frank Vahid, Department of Computer Science and Engineering, University of
California, Riverside, CA 92521.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2006 ACM 1073-0516/01/0300-0034 $5.00

2005; Xilinx 2005a; Xilinx 2004a], and while recent commercial compilers offer to
automatically partition critical software regions to FPGAs or ASICs [Critical Blue 2005]
or to create custom coprocessors tightly integrated within the processor itself [Tensilica
2006], the significantly different and costlier tool flows associated with FPGA
coprocessors has prevented the use of such coprocessors in mainstream software flows.

We define a software application’s critical region as a loop or subroutine that is
frequently executed, accounting for perhaps 10% or more of total application execution
time. For many applications, the majority of execution time may come from just a few
critical regions. Therefore, while speeding up a critical region accounting only for 10% of
the execution time may not provide extremely high overall speedups by itself, by
speeding up several such critical regions, the overall performance improvement can be
significant. Implementing a critical region on an FPGA, commonly called
hardware/software partitioning, can sometimes result in high speedups of 100X-1000X or
more for that region. Of course, the impact of this speedup on overall application speedup
depends on the percentage contribution of the region to overall application execution
time, per Amdahl’s Law. Furthermore, not all applications have regions amenable to
speedup with an FPGA. Nevertheless, for many applications, researchers and commercial
vendors have observed overall application speedups of 10X-100X [Balboni et al. 1996;
Berkeley Design Technology 2004; Chen et al. 2004; Eles et al. 1997; Ernst et al. 1993;
Gajski et al. 1998; Guo et al. 2005; Henkel and Ernst 1997; Keane et al. 2004; Stitt and
Vahid 2005; Stitt et al. 2005], and in some cases approaching 1000X [Böhm et al. 2002;
Venkataramani et al. 2001], obtained by implementing critical regions on an FPGA.

The advent of single-chip microprocessor/FPGA devices makes hardware/software
partitioning even more attractive. Such devices include one or more microprocessors, and
an FPGA fabric, on a single chip, and typically include efficient mechanisms for
communication between the microprocessor and FPGA, along with shared memory. Such
devices first appeared in the late 1990s from Atmel [Atmel 2005] and Triscend
[Matsumoto 2000; Triscend 2003] with low end microprocessors and FPGAs supporting
tens of thousands of gates. Altera developed Excalibur devices incorporating an ARM9
processor and million-gate FPGA fabric [Altera 2005]. Xilinx offers the Virtex-II Pro
[Xilinx 2004b] and Virtex-4 FX [Xilinx 2005b] devices incorporating one or more
PowerPC processors with an FPGA fabric having tens of millions of gates. These devices
all implement the processors as hard cores, not as a circuit mapped onto the FPGA fabric
itself. Given the appearance of FPGAs supporting tens of millions of gates, and soon
hundreds of millions of gates, and knowing that microprocessors may require only tens or
hundreds of thousands of gates, we can also see that any FPGA can implement
microprocessors as soft cores mapped on the FPGA fabric itself.

Electronically programming bits onto an FPGA is fundamentally the same as
programming a microprocessor. Like a microprocessor, an FPGA is an off-the-shelf part.
We can program an FPGA by downloading a bitstream into the FPGA’s memory, just as
we program a microprocessor. Thus, conceptually, a compiler can partition an application
into a microprocessor part and an FPGA coprocessor part, and indeed such compilers do
exist, although mostly in the research domain [Balboni et al. 1996; Böhm et al. 2002;
Critical Blue 2005; Eles et al. 1997; Gajski et al. 1998; Gokhale and Stone 1998; Hauser
and Wawrzynek 1997; Henkel and Ernst 1997; Stitt and Vahid 2002; Xilinx 2000a].
Unfortunately, such compilers require a significant departure from traditional software
tool flows. First, the compiler must determine the critical regions of a software
application, and such determination typically requires profiling. Profiling, while
conceptually straightforward, is often not a standard part of compilation – especially in
embedded systems, where executing an application often involves complicated time-
dependent interactions with the application’s environment, making setting up simulations
difficult. Second, the compiler must generate a binary for the microprocessor and a

binary for the FPGA coprocessor, and the latter is by no means standard. Thus,
partitioning compilers lose the important concept of a standard binary and the associated
benefits of portability.

Recently, researchers showed that by using decompilation techniques, designers could
perform desktop hardware/software partitioning starting from binaries rather than from
high-level code, with competitive resulting performance and energy [Banerjee et al.
2004; Mittal et al. 2004; Stitt and Vahid 2005; Stitt and Vahid 2002]. Binary-level
partitioning opens the door to dynamic hardware/software partitioning, in which an
executing binary is dynamically and transparently optimized by moving software kernels
to on-chip configurable logic, a process we call warp processing. Warp processors,
originally proposed in [Stitt, Lysecky, and Vahid 2003], provide designers with the
ability to program using a high level language, such as C, while exploiting the underlying
FPGA to improve performance and reduce energy consumption with no required
knowledge of the FPGA. Such transparent optimizations can be quite beneficial, as
programming in a high level language is about 5X more productive compared to
programming in VHDL [Vissers 2004].

2. FPGA COPROCESSING

Implementing a critical region as a circuit on an FPGA may yield high performance
speedups compared to implementing the critical region on a microprocessor when the
critical region involves extensive bit-level manipulation or the critical region’s code is
highly parallelizable.

Bit-level operations are much less efficient on a microprocessor because each bit-
level operation requires a separate instruction or several instructions. An example of the
efficiency of FPGA bit-level manipulations is a bit reversal operation, shown in Fig. 1.
Fig. 1 (a) presents an efficient software implementation of a bit reversal that requires
approximately 64 instructions to reverse one 32-bit integer [Press et al. 1992]. Depending
on the microprocessor, these 64 instructions could require anywhere from 32 to 128
cycles to complete. However, as shown in Fig. 1 (b), a bit-reversal implemented as a
hardware circuit in an FPGA requires only wires to compute the bit reversal and can be
performed in a single cycle achieving a speedup ranging from 32X to 128X (assuming
equal cycle lengths).

Furthermore, an FPGA can generally implement parallelizable code much more
efficiently even when compared to a VLIW (Very Large Instruction Word) or multiple-
issue microprocessor. Whereas a microprocessor might be able to execute several

Fig. 1. A comparison of a bit reversal in (a) software on a microprocessor and (b) hardware on an FPGA.

64 instructions,
32 to 128 cycles

1 cycle, Speedup
of 32X to 128X

(a)

Hardware for Bit Reversal

x = (x >>16) | (x <<16);
x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);
x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0);
x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);
x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa);

C Code for Bit Reversal

Procsso
rProcessor

sll
srl FPGA

Original X Value

Bit Reversed X Value

(b)

operations in parallel, an FPGA can potentially implement thousands of operations in
parallel. The finite impulse response (FIR) filter shown in Fig. 2 is an example of highly
parallelizable code that can potentially greatly benefit by implementing the code on an
FPGA. Fig. 2 (a) shows the execution of the FIR filter on a microprocessor requiring
many multiply-accumulate operations and executing for thousands of cycles.
Alternatively, Fig. 2 (b) shows an FPGA implementation of the FIR filter in which the
hardware circuit within the FPGA performs multiplications in parallel and implements
the accumulation as a tree of adders (assuming sufficient FPGA resources). By
parallelizing the multiply-accumulate operations, the FPGA implementation can achieve
a speedup of at least 100X.

3. COMPONENTS OF A WARP PROCESSOR

Fig. 3 provides an overview of a warp processor, highlighting the steps performed during
dynamic hardware/software partitioning. A warp processor consists of a main processor
with instruction and data caches, an efficient on-chip profiler, our warp-oriented FPGA

Fig. 2. FIR filter implemented in (a) software on a microprocessor and (b) hardware on an FPGA.

Fig. 3. Warp processor architecture/overview.

(a)

for (i=0; i < 128; i++)
 accum += c[i] * x[i]
..
..
..

1000’s of
instructions

(b)

* * * * * * * * * * * *
+ + + + + +

+ + +
+ +

+

.
.

.
.

.

log 128 = 7 cycles
Speedup > 100X Procsso

r
Processor FPGA

5
µP I

D

Warp
Config.

Partitioned application
executes faster and
with lower energy
consumption

Profile application to
determine critical regions

2

Profiler

Initially execute
application in
software only

1

µP
I$

D$

Partition critical
regions to hardware

3

On-chip CAD
Module

Program configurable logic
and update software binary

4

Warp-oriented
FPGA

(W-FPGA)

(W-FPGA), and an on-chip computer-aided design module. Initially, a software
application executing on a warp processor will execute only on the main processor.
During execution of the application, the profiler monitors the execution behavior of the
application to determine the critical kernels within the application. After identifying the
critical regions, the on-chip CAD module executes the Riverside On-Chip CAD tools
(ROCCAD) to re-implement the critical software regions as a custom hardware
component within the W-FPGA.

We include a profiler within each warp processor to determine the critical kernels
within the executing application that the warp processor could implement as hardware.
Dynamic profiling is a widely studied problem for which many solutions exist [Lysecky
et al. 2004a; Zagha et al. 1996; Zhang et al. 1997; Zilles and Sohi 2001]. Typical profilers
instrument code, thus changing program behavior and requiring extra tools. Instead, we
incorporate a non-intrusive profiler that monitors the instruction addresses seen on the
memory bus [Gordon-Ross and Vahid 2003]. The profiler non-intrusively monitors the
instruction addresses on the instruction memory bus. Whenever a backward branch
occurs, the profiler updates a cache of 16 8-bit entries that store the branch frequencies.
When any of the registers storing the branch frequencies become saturated, the profiler
shifts all 16 registers right by one bit, thereby maintaining a list of relative branch
frequencies while ensuring all branch frequency registers do not eventually become
saturated. The profiler uses roughly 2000 gates along with a small cache with only a few
dozen entries with a small associativity to save area and power. Furthermore, through
simulations of our warp processor design, we have found that the profiler can accurately
determine the critical regions of an application within ten branch frequency register
saturations. Using this methodology, the profiler is able to properly select the correct
critical kernels for partitioning for all applications we considered. Further details of the
profiler design and accuracy can be found in [Gordon-Ross and Vahid 2003].

After profiling the application to determine the critical regions, the on-chip CAD
module executes our partitioning, synthesis, mapping, and routing algorithms. ROCCAD
first analyzes the profiling results for the executing application and determines which
critical region the warp processor should implement in hardware. After selecting the
software region to implement in hardware, ROCCAD decompiles the critical region into
a control/dataflow graph and synthesizes the critical kernel to produce an optimized
hardware circuit that is then mapped onto our warp-oriented FPGA through technology
mapping, placement, and routing. Finally, ROCCAD configures the configurable logic
and updates the executing application’s binary code to utilize the hardware within the
configurable logic fabric. During the binary update, the warp processor must ensure that
the main processor is not currently executing within the critical region.

Currently, we implement the on-chip CAD module as a separate ARM7 processor
including caches and separate instruction and data memories, which can either be located
on-chip or off-chip depending on what is acceptable for a given warp processor
implementation. Alternatively, we could eliminate the need for the on-chip CAD module
by executing our on-chip CAD tools as a software task on the main processor sharing
computation and memory resources with the main application. We can also envision a
multiprocessor system in which we incorporate multiple warp processors on a single
device. In such a system, there is no need to also incorporate multiple on-chip CAD
modules, as a single on-chip CAD module is sufficient for supporting each of the
processors in a round robin or similar fashion. Furthermore, we can again implement the
CAD tools as a software task executing on any of the multiple processors.

Finally, after re-implementing an application’s critical kernels as hardware,
programming the W-FPGA with the hardware configuration, and updating the
applications binary to interface with the hardware, the application executes on the warp
processor using a mutually exclusive execution model, whereby either the main processor

or the W-FPGA is active at any given time. Using this implementation, the main
processor and W-FPGA can access the same data cache, thereby avoiding any cache
coherency and/or consistency issues. Furthermore, we examined the potential benefits of
allowing parallel execution of the processor and configurable logic fabric and found that
parallel execution did not yield significant performance improvements for most
applications.

In simulating our warp processor design, our warp processor provides excellent
performance and energy benefits for the embedded applications we analyzed in this
paper. Warp processing is ideally suited for embedded systems that repeatedly execute
the same application, or set of applications, for extended periods, and especially for
systems in which software updates and backwards compatibility is essential. As such, a
warp processor can quickly determine which critical regions to implement in hardware
and continue to utilize the same hardware configuration either for the duration of the
product’s lifetime or until the software is updated. However, warp processing can also be
incorporated into other domains such as desktop computing, high performance servers,
personal digital assistants, etc. Within these domains, warp processing could prove to be
extremely useful for data intensive applications such as image or video processing, data
analysis, scientific research, or even games, as these applications typically execute for an
extended period of time during which the warp processor could partition the critical
kernels to hardware. Additionally, short running applications that execute many times can
also benefit from warp processing, as long as the warp processor can remember the
application’s hardware configuration.

4. WARP-ORIENTED FPGA

Fig. 4 shows the overall organization of our W-FPGA consisting of a data address
generator (DADG) with loop control hardware (LCH), three input and output registers, a
32-bit multiplier-accumulator (MAC), and our routing-oriented configurable logic fabric
(RCLF) presented in [Lysecky and Vahid 2004]. The W-FPGA handles all memory
accesses to and from the configurable logic using the data address generator.
Furthermore, the data retrieved and stored to and from each array is located within one of
the three registers Reg0, Reg1, and Reg2. These three registers also act as the inputs to
the configurable logic fabric and can be mapped as inputs to the 32-bit multiplier-
accumulator or directly mapped to the configurable logic fabric. Finally, we connect the
outputs from the configurable logic fabric as inputs to the three registers using a
dedicated bus.

Since we are targeting critical loops that usually iterate many times before
completion, the W-FPGA must be able to access memory and to control the execution of
the loop. We include a data address generator with loop control hardware in our FPGA

Fig. 4. Warp-oriented Field Programmable Gate Array (W-FPGA).

DADG
&

LCH

Routing-oriented
Configurable Logic

Fabric

Reg0

32-bit MAC

Reg1 Reg2

design to handle all memory accesses as well as to control the execution of the loop. The
data address generator within the W-FPGA can handle memory accesses that follow
regular access patterns. Such data address generators and loop control hardware are often
incorporated in digital signal processors to achieve zero loop overhead, meaning that
cycles are not wasted computing loop bounds and sequential memory addresses. Loop
control hardware typically is capable of executing a loop for a specific number of
iterations. While we can determine the loop bounds for many critical loops, loops can
also contain control code within the loop that terminates the loop’s execution. For
example, in a C/C++ implementation to perform a lookup in an array, once we have
found the desired value, we will typically terminate the loop’s execution using a break
statement. Therefore, the loop control hardware within the W-FPGA will control the
loop’s iterations assuming a predetermined number of iterations, but allows for
terminating the loop’s execution using an output from the configurable logic fabric.

Of the applications we have analyzed in developing warp processors, we frequently
found common operations within the application’s critical regions, including addition,
subtraction, and multiplication. Furthermore, while we often see multiplications in the
critical code regions, they are often in the form of a multiply-accumulate operation.
Implementing a multiplier with a small configurable logic fabric is generally slow and
requires a large amount of logic and routing resources. Therefore, we include a dedicated
multiplier-accumulator within the W-FPGA to conserve resources and provide fast
performance.

Fig. 5 (a) shows our routing-oriented configurable logic fabric, presented in [Lysecky
and Vahid 2004]. Our RCLF consists of an array of configurable logic blocks (CLBs)
surrounded by switch matrices for routing between CLBs. Each CLB is connected to a
single switch matrix to which all inputs and outputs of the CLB are connected. We handle
routing between CLBs using the switch matrices, which can route signals in one of four

Fig. 5. (a) Routing-oriented configurable logic fabric, (b) combinational logic block, and (c) switch matrix
architecture.

(c)

LUT

LUT

a b c d e f

o1 o2 o3 o4

Adj.
CLB

Adj.
CLB

0

0L

1

1L
2L

2

3L

3

0
1
2
3

0L
1L
2L
3L

0
1
2
3

0L1L2L3L

0 1 2 3 0L1L 2L 3L

(b) (a)

SM

CLB

SM

CLB

SM

SM SM

SM

directions to an adjacent SM (represented as solid lines) or to a SM two rows apart
vertically or two columns apart horizontally (represented as dashed lines).

Fig. 5 (b) shows our combinational logic block architecture. Each CLB consists of
two 3-input 2-output LUTs, which provides the equivalent of a CLB consisting of four 3-
input single output LUTs with fixed internal routing. We chose 3-input 2-output LUTs to
simplify our technology mapping and placement algorithms by restricting the choices our
tools will analyze in determining the final circuit configuration. Additionally, the CLBs
are capable of supporting carry chains through direct connections between horizontally
adjacent CLBs and within the CLBs through internal connections between adjacent
LUTs. Hardware components, such as adders, comparators, etc., frequently require carry
logic and so providing support for carry chains simplifies the required routing for many
hardware circuits.

The size of our LUTs and CLBs is very important as the size directly impacts area
resources and delays within our configurable logic fabric, as well as the complexity of the
tools needed to map a circuit to our configurable logic fabric. Several studies have
analyzed the impacts of LUT size on both area and timing [Chow et al. 1999; Singh et al.
1992]. These studies have shown that look-up tables with five or six inputs result in
circuits with the best performance, while LUTs with three of four inputs are still
reasonable. Another study analyzed the impacts on cluster size, the number of single
output LUTs within a CLB, on speed and area of various circuits [Marquardt et al. 2000].
Their findings indicate that cluster sizes of 3 to 20 LUTs were feasible, and a cluster size
of eight produced the best tradeoff between area and delay of the final circuits. However,
while we would like to incorporate large cluster sizes within our configurable logic
fabric, such clusters allow more flexibility during technology mapping and placement
phases, which in turn requires more complex technology mapping and placement
algorithms to handle the added complexity.

Finally, Fig. 5 (c) shows our switch matrix architecture. Each switch matrix is
connected using eight channels on each side of the switch matrix, four short channels
routing between adjacent nodes and four long channels routing between every other
switch matrix. Routing through the switch matrix can only connect a wire from one side
with a given channel to another wire on the same channel but a different side of the
switch matrix. Additionally, each of the four short channels is paired with a long channel
and can be connected together within the switch matrix (indicated as a circle where two
channels intersect) allowing wires to be routed using short and long connections. In other
words, the switch matrix can route a wire on a single channel between two different sides
of the switch matrix connecting short, long, or short and long channels. Designing the
switch matrix in this manner simplifies the routing algorithm by only allowing the router
to route a wire using a single pair of channels throughout the configurable logic fabric.

Commercially available FPGAs consist of similar routing resources but typically are
capable of routing between switch matrices much further apart and often include routing
channels spanning an entire row or column. While such routing resources are beneficial
in terms of creating compact designs with less routing overhead, the flexible routing
resources require complex place and route tools that are not amenable to on-chip
execution. Therefore, we chose to limit the complexity of routing resources to allow for
simplified place and route algorithms. In doing so, we are able to develop a set of fast,
lean place and route tools that can execute 10X faster using 18X less memory than
existing desktop-based place and route tools [Lysecky et al. 2005]. While our
configurable logic design is fundamentally similar to existing FPGAs and can achieve
comparable performance to existing commercial FPGAs for many circuits, our
configurable logic’s limited routing resources results in lower clock frequencies for large
circuits that require a large percentage of the routing resources. However, for partitioning
SW kernels, the inclusion of the data address generator and multiply-accumulator within

our W-FPGA reduces the complexity and size of the circuit implemented on the
configurable logic, thereby allowing for faster clock frequencies and alleviating any
potential degradation in performance. The interested reader can find further details on the
configurable logic fabric design in [Lysecky and Vahid 2004].

5. RIVERSIDE ON-CHIP COMPUTER-AIDED DESIGN TOOLS

Warp processors require the development of lean versions of partitioning, decompilation,
behavioral, register-transfer, and logic synthesis, technology mapping, placement, and
routing algorithms. However, the traditional desktop-based counterparts of these tools
typically require long execution times often ranging from minutes to hours, large
amounts of memory resources often exceeding 50 megabytes, and large code size
possibly requiring hundreds of thousands of lines of source code. However, the on-chip
CAD algorithms and tools incorporated within warp processors must have very fast
execution times while using small instruction and data memory resources. Therefore, we
developed the Riverside On-Chip CAD (ROCCAD) tools, designed specifically to provide
very fast execution times while minimizing the data amount of memory used during
execution and providing excellent results.

Fig. 6 presents the tool chain flow for our on-chip CAD tools, ROCCAD, executed on
the on-chip CAD module’s processor. Starting with the software binary, decompilation
converts the software loops into a high-level representation more suitable for synthesis.
Much of the decompilation techniques we utilize are based on Cifuentes’ work in binary
translation [Cifuentes et al. 1998; Cifuentes et al. 1999]. Decompilation first converts
each assembly instruction into equivalent register transfers, which provides an
instruction-set independent representation of the binary. Once decompilation converts the
instructions into register transfers, the decompilation tool builds a control flow graph for
the software region and then constructs a data flow graph by parsing the semantic strings
for each register transfer. The parser builds trees for each register transfer and then
combines the trees into a full data flow graph through definition-use and use-definition
analysis. After creating the control and data flow graphs, the decompiler applies standard

Fig. 6. ROCCAD on-chip CAD tool chain.

BinaryBinary

BinaryHW

 Partitioning

 Behavioral and
RT Synthesis

 Decompilation Binary
Updater

Binary Updated
Binary

 Technology Mapping

 Placement

 Logic Synthesis

 Routing

 JIT FPGA
Compilation

compiler optimizations to remove the overhead introduced by the assembly code and
instruction set. After recovering a control/data flow graph, the decompilation process
analyzes the control/data flow graph to recover high-level constructs such as loops and if
statements [Cifuentes 1996].

ROCCAD then performs partitioning by analyzing the critical software kernels
determined by the on-chip profiler to evaluate which software kernels are most suitable
for implementing in hardware. Using a simple partitioning heuristic, the partitioning
algorithm will determine which critical kernels the warp processor will implement within
the configurable logic architecture to maximize speedup while reducing energy. Next,
ROCCAD uses behavioral and register-transfer (RT) synthesis to convert the
control/data flow graph for each critical kernel into a hardware circuit description. The
register-transfer synthesis then converts the hardware circuit descriptions into a netlist
format, which specifies the hardware circuits using Boolean expressions for every output
of the circuit.

Finally, the on-chip CAD tools will execute the just-in-time (JIT) FPGA compilation
tools to map the hardware binary onto the underlying configurable logic fabric. The JIT
FPGA compiler first executes logic synthesis to optimize the hardware circuit. Starting
with the Boolean equations representing the hardware circuit, the JIT FPGA compiler
initially creates a directed acyclic graph of the hardware circuit’s Boolean logic network.
The internal nodes of the graph correspond to any simple two input logic gate, such as
AND, OR, XOR, NAND, etc. We then perform logic synthesis to optimize the logic
network using the Riverside On-Chip Minimizer (ROCM), a simple two-level logic
minimizer presented in [Lysecky and Vahid 2003]. Starting with the input nodes, we
traverse the logic network in a breadth first manner and apply logic minimization at each
node. ROCM’s logic minimization algorithm uses a single expand phase to achieve good
optimization. While a more robust two-level logic minimizer could achieve better
optimization for larger examples, the simplified algorithm is better suited for the on-chip
execution of warp processors.

After logic synthesis, the JIT FPGA compiler performs technology mapping to map
the hardware circuit onto the CLBs and LUTs of the configurable logic fabric. The
technology mapper uses a greedy hierarchical graph-clustering algorithm. The technology
mapping first performs a breadth-first traversal of the input directed acyclic graph starting
with the output nodes and combines nodes to create LUT nodes corresponding with 3-
input single-output LUTs. Once we identify the single-output LUT nodes, the technology
mapper again performs a breadth-first traversal starting from the output nodes and
combines nodes wherever possible to form the final 3-input 2-output LUTs, which are a
direct mapping to the underlying configurable logic fabric. Finally, the technology
mapper again traverses the graph now representing the technology mapped hardware
circuit and packs the LUTs together into CLBs by identifying situations in which we can
utilize the routing resources between adjacent LUTs, such as when the output from one
LUT is an input to another LUT.

After mapping the hardware circuit into a network of CLBs, the JIT FPGA compiler
places the CLB nodes onto the configurable logic. The placement algorithm is a greedy
dependency-based positional placement algorithm that first determines a relative
placement of the CLB nodes within the hardware circuit to each other. The placement
algorithm starts by determining the critical path within the circuit and places these nodes
into a single horizontal row within the RCLF. The placement algorithm then analyzes the
remaining non-placed nodes to determine the dependency between the non-placed nodes
and the nodes already placed. Based upon these dependencies, for each unplaced node,
we place the node either above (input to an already placed node) or below (uses an output
from an already placed node) as close as possible to the dependent node. During this
placement procedure, the placement algorithm also attempts to utilize the routing

resources between adjacent CLBs within the RCLF whenever possible. After determining
the relative placement of LUT nodes, the placement algorithm superimposes and aligns
the relative placement onto the configurable logic fabric making minor adjustments at the
edges if needed.

We then perform routing between inputs, outputs, and CLBs with the configurable
logic fabric using the Riverside On-Chip Router (ROCR), presented in [Lysecky et al.
2004b; Lysecky et al. 2005]. ROCR utilizes the general approach of Versatile Place and
Route’s (VPR’s) routability-driven router allowing overuse of routing resources and
illegal routes and eliminates illegal routing through repeated routing iterations [Betz et al.
1999; Betz and Rose 1997]. ROCR starts by initializing the routing costs within a routing
resource graph representing the configurable logic fabric. For all un-routed nets, ROCR
uses a greedy routing approach to route the net. During the greedy routing process, for
each sink within the net, ROCR determines a route between the un-routed sink and net’s
source or the nearest routed sink. At each step, ROCR restricts the router to only
choosing paths within a bounding box of the current sink and the chosen location to
which they are routing. After all nets are routed, if illegal routes exist, the result of
overusing routing channels, then ROCR rips-up only the illegal routes and adjusts the
routing costs of the entire routing resource graph. ROCR uses the same routing cost
model of VPR’s routability-driven router. However, in addition, ROCR incorporates an
adjustment cost. During the process of ripping-up illegal routes, ROCR adds a small
routing adjustment cost to all routing resources used by an illegal route. During the
routing process, an early routing decision can force the routing algorithm to choose a
congested path. Hence, the routing adjustment cost discourages the greedy routing
algorithm from selecting the same initial routing and enables the algorithm to attempt a
different routing path in subsequent routing iterations. Once we determine a valid global
routing, ROCR performs detailed routing in which we assign the channels used for each
route. The detailed routing starts by constructing a routing conflict graph. Two routes
conflict when both routes pass through a given switch matrix and assigning the same
channel for both routes would result in an illegal routing within the switch matrix. ROCR
assigns the routing channels by determining a vertex coloring of the routing conflict
graph. While many approaches for vertex coloring exist, we chose to use Brelaz’s vertex
coloring algorithms [Brelaz 1979]. Brelaz’s algorithm is a simple greedy algorithm that
produces good results while not increasing ROCR’s overall memory consumption. If
ROCR is unable to assign a legal channel assignment for all routes, for those routes that
we cannot find a valid channel assignment, ROCR rips-up the illegal routes, adjusts the
routing costs of all nodes along the illegal route (as described before), and reroutes the
illegal routes. ROCR finishes routing a circuit when a valid routing path and channel
assignment has been determined for all nets.

Finally, the binary updater handles updating the software binary to utilize the
hardware for the loops. We replace the original software instructions for the loop with a
jump to hardware initialization code. The initialization code first enables the hardware by
writing to a memory mapped register or port that is connected to the hardware enable
signal. Following the enable instruction, we generate the code responsible for shutting
down the microprocessor into a power-down sleep mode. When the hardware finishes
execution, the hardware asserts a completion signal that causes a software interrupt. This
interrupt wakes up the microprocessor, which resumes normal execution. Finally, we add
a jump instruction at the end of the hardware initialization code that jumps to the end of
the original software loop.

6. EXPERIMENTAL RESULTS

Considering a warp processor system with a dedicated on-chip CAD module, we must be
able to execute the on-chip tools on a small, embedded microprocessor, such as an

ARM7, using limited instruction and data memory resources while providing fast
execution times. Furthermore, in a system in which the CAD tools execute as a task on
the one of the main processors, the algorithms must still use limited memory resources
and execute quickly as to not impact the execution of the main application. The
ROCCAD tools require 34,720 lines of C code corresponding to a binary size of 327
kilobytes. Additionally, the ROCCAD algorithms execute for an average of only 1.2
seconds on a 40 MHz ARM7 processor requiring a maximum of 3.6 megabytes of data
memory during execution, for the benchmarks described below.

We compare our warp processors with a traditional hardware/software partitioning
approach targeting an FPGA, comparing speedup and energy reduction of critical regions
for 15 embedded systems benchmarks from NetBench [Memik et al. 2001], MediaBench
[Lee et al. 1997], EEMBC [EEMBC 2005], Powerstone [Malik et al. 2000], as well as
our on-chip logic minimization tool ROCM [Lysecky and Vahid 2003]. Instead of
restricting our analysis to a specific processor and FPGA, we compare the performance
and energy savings of both approaches in a device independent manner by analyzing the
software and hardware implementations with respect to the ratio of execution frequency
and power consumption of the processor to that of the configurable logic. Thus, in
utilizing ratios to characterize the processor and FPGA’s operating frequency and power
consumption, we can analyze the benefits of warp processing independently of the
specific technology process we are utilizing, as the ratios between processor and FPGA
operating frequency are likely to remain same with successive technology generations.

In determining the processor to FPGA operating frequency and power consumption
ratios, we analyzed the published performance and power consumption data for several
commercially available single-chip microprocessor/FPGA devices. Table I provides a
summary of the maximum operating frequencies of several single-chip
microprocessor/FPGA devices. The Xilinx Virtex-4 FX is the fastest of the devices
integrating two or more 450 MHz PowerPC processors within a configurable logic fabric
operating at a maximum frequency of 500 MHz [Xilinx 2005b]. Xilinx also offers the
second fastest device, the Xilinx Virtex-II Pro, integrating two or more 400 MHz
PowerPC processors within a configurable logic fabric operating at a maximum
frequency of 320 MHz [Xilinx 2004b]. Altera’s Excalibur combines a 200 MHz ARM9
processor with an FPGA operating at a maximum frequency of 180 MHz [Altera 2005].
Atmel’s Field Programmable System Level Integrated Circuit (FPSLIC) combines a 40
MHz AVR processor with an FPGA capable of executing at 33 MHz [Atmel 2005].
Finally, Triscend offered the A7 that combines a processor and FPGA both executing at a
maximum frequency of 60 MHz [Triscend 2003]. Table I further provides the ratio of
processor frequency to FPGA frequency for these platforms. In the best case, the Virtex-4
FX device achieves a ratio of 1:1.1, whereas the Xilinx Virtex-II Pro and Atmel FPSLIC
both have a ratio of 1:0.8. On average, these single-chip devices have a processor to
FPGA frequency ratio of 1:0.92. Furthermore, as processors continue to increase in speed

Table I. Processor and FPGA operating frequencies of commercially available single-
chip microprocessor/FPGA devices.

Device Proc. Freq.
(MHz)

FPGA Freq.
(MHz)

Proc.:FPGA
Freq.

Xilinx Virtex-4 FX (0.09µm) 450 500 1:1.1
Xilinx Virtex-II Pro (0.13µm) 400 320 1:0.8
Altera Excalibur (0.18µm) 200 180 1:0.9
Atmel FPSLIC (0.18µm) 40 33 1:0.8
Triscend A7 (0.18µm) 60 60 1:1.0
Average: 1:0.92

with each subsequent process technology node, the operating frequencies of FPGAs will
also increase and the ratio of processor frequency to FPGA frequency will remain
relatively constant, as is exhibited by the successive offering from Xilinx [Xilinx 2000b].

Table II presents the operating frequency and power consumption ratios between a
low power ARM7 processor and a traditional FPGA and between a low power ARM7
processor and our W-FPGA. The processor to FPGA operating frequency ratio is based
on the average presented in Table I. We calculated the processor to FPGA power
consumption ratio by evaluating the power consumption of the critical kernels for several
embedded benchmark applications implemented as software executing an on a low power
processor and hardware executing on an FPGA. For each of the 15 NetBench,
MediaBench, EEMBC, and Powerstone benchmarks considered, we implemented the
applications’ critical regions as hardware by manually designing a VHDL
implementation and synthesizing the design for a Xilinx Virtex-E FPGA using Xilinx ISE
4.1 [Xilinx 2006]. Using the Xilinx Virtex Power Estimator along with information
provided by Xilinx ISE, we determined the power consumed by the FPGA for each
critical region. We then calculated the processor to FPGA power consumption ratio by
comparing the average power consumed by the Virtex-E FPGA to the power
consumption of a low power ARM7 processor, both of which are implemented using a
0.18 µm technology. On average, the FPGA consumes three times as much power as the
ARM7 processor for the critical regions of the applications we consider, corresponding to
a ratio of 1:3.0. Furthermore, as the spreadsheet based Xilinx Virtex Power Estimator is
not as accurate as the XPower tool, we conducted a similar analysis using several of the
embedded benchmark applications with almost identical results.

The simplicity of the W-FPGA’s configurable logic fabric allows us to achieve higher
execution frequencies and lower power consumption compared to a traditional FPGA
(implemented using the same process technology) for the embedded applications
considered. We analyzed both execution frequency and power consumption of our W-
FPGA compared to an existing FPGA. To determine the performance and power
consumption of our W-FPGA, we implemented our configurable logic architecture in
VHDL and synthesized the design using Synopsys Design Compiler targeting the UMC
0.18 µm technology library. Using the synthesized fabric along with gate-level
simulations, we determined the delay and power consumption of individual components
within our configurable logic architecture. We note that this ASIC implementation of our
configurable logic is less efficient than a full custom layout would be in terms of
performance, power, and area, and as such, our estimates for performance and power
consumption of the W-FPGA are slightly pessimistic. We implemented the critical
regions for all benchmark applications using our on-chip CAD tools and determined the
maximum execution frequency by determining the critical path within each placed and
routed design and further calculated the power consumption for each circuit. In addition
to considering the delay and power consumption of the configurable logic and switch
matrices, we also considered the delay and power consumption associated with the short
and long wire segments used for routing the hardware design. Finally, we compared the
execution frequency of our W-FPGA with the Xilinx Virtex-E FPGA, as the Virtex-E
FPGA uses a 0.18 µm process. On average, our W-FPGA can achieve clock frequencies

Table II. Operating frequency and power consumption ratios between a low power
ARM7 processor and a traditional FPGA and the W-FPGA.

Device Proc.:FPGA Freq. Proc.:FPGA Power

 FPGA 1:0.92 1:3.0
 W-FPGA 1:1.0 1:2.25

1.5x faster than the Xilinx FPGA and consumes 25% less power. Therefore, our warp
processors should exhibit a ratio of processor frequency to W-FPGA frequency of 1:1
and a power consumption ratio of 1:2.25.

Fig. 7 and Fig. 8 highlight the critical region speedup and critical region energy
reduction for the single most critical kernel using warp processors and traditional
hardware/software partitioning targeting an FPGA for all 15 benchmarks using the
operating and power consumption ratios summarized in Table II. In calculating speedups
of the two approaches, we determined all software execution cycles using the
SimpleScalar simulator [Burger and Austin 1997] and hardware execution cycles using
gate-level simulations of the partitioned critical regions and our W-FPGA. For the
traditional hardware/software partitioning, we manually designed the hardware
implementations of the critical regions in VHDL to determine the number of cycles
required for the hardware execution, considering the same critical regions partitioned by
warp processing for the traditional hardware/software partitioning.

We calculated the energy required for the critical regions after partitioning using the
equations in Fig. 9. The total energy consumption, Etotal, is the sum of the energy
consumed by the processor, EProc, and the energy consumed by the hardware

Fig. 7. Critical region speedup of single critical region implemented using warp processors and traditional
hardware/software partitioning targeting an FPGA for NetBench, MediaBench, EEMBC, and Powerstone

benchmark applications.

Fig. 8. Critical region energy reduction of single critical region implemented using warp processors and
traditional hardware/software partitioning targeting an FPGA for NetBench, MediaBench, EEMBC, and

Powerstone benchmark applications.

Fig. 9. Equations for determining energy consumption after hardware/software partitioning.

0%

25%

50%

75%

100%

bre
v

g3
fax url

roc
m

pk
tflo

w
ca

nrd
r

bit
mnp

tbl
oo

k
tts

prk
matr

ix idc
t

g7
21

mpe
g2 fir

matm
ul

Ave
rag

e:

Med
ian

:

Benchmarks

%
 E

ne
rg

y
R

ed
uc

tio
n Warp Processor Traditional HW/SW Partitioning

totalstaticactiveHWHW

idleidleProcactiveactiveProcProc

HWProctotal

tPtPE

tPtPE
EEE

×+×=

×+×=
+=

)()(

52119 48109

0
5

10
15
20
25

bre
v

g3
fax url

roc
m

pk
tflo

w
ca

nrd
r

bit
mnp

tbl
oo

k
tts

prk
matr

ix
idct

g7
21

mpe
g2 fir

matm
ul

Ave
rag

e:

Med
ian

:

Benchmarks

Sp
ee

du
p

Warp Processor Traditional HW/SW Partitioning

configuration, EHW. The energy consumed by the processor consists of the energy
consumed by the processor during initialization of the hardware configuration, computed
as the processor’s active power consumption, PProc(active), multiplied by the initialization
time, tinit, and the energy consumed by the processor while the critical region is executing
in hardware, computed as the processor’s idle power consumption, PProc(idle), multiplied
by the active time for the hardware configuration, tactive. The processor power
consumption is based on the power consumption of the ARM7 executing at its maximum
operating frequency, 100MHz. The energy consumed by the hardware configuration
consists of the energy consumed during execution of the hardware, computed as the
power consumption of the hardware configuration, PHW, multiplied by the active time for
the hardware configuration, tactive. Additionally, the energy consumed by the hardware
configuration also includes the static energy consumed by the configurable logic during
the entire execution time of the application, which is computed as the static power
consumed by the configuration logic, Pstatic, multiplied by the total execution time, ttotal.

On average, our warp processor achieves a critical region speedup of 22X with an
average energy reduction of 80%. In comparison, the traditional hardware/software
partitioning approach targeting an FPGA achieves a critical region speedup of 20X and
an energy reduction of 79%. Additionally, warp processors achieve a critical region
speedup of over 100X for the benchmark g3fax. For eight of the applications, including
brev, g3fax, url, bitmnp, ttsprk, g721, mpeg2, and matmul, the warp processor provides
an energy reduction of over 80% for the applications’ single most critical regions. The
increased performance of the warp processor compared to the traditional
hardware/software partitioning can be partially attributed to inclusion of customized

Fig. 10. Overall application speedups of NetBench, MediaBench, EEMBC, and Powerstone benchmark
applications implemented using warp processors (supporting up to four critical regions) and traditional

hardware/software partitioning targeting an FPGA.

Fig. 11: Overall energy reduction of NetBench, MediaBench, EEMBC, and Powerstone benchmark
applications implemented using warp processors (supporting up to four critical regions) and traditional

hardware/software partitioning targeting an FPGA.

0

3

6

9

12

15

bre
v

g3
fax url

roc
m

pk
tflo

w
ca

nrd
r

bit
mnp

tbl
oo

k
tts

prk
matr

ix idc
t

g7
21

mpe
g2 fir

matm
ul

Ave
rag

e:

Med
ian

:

Benchmarks

Sp
ee

du
p

Warp Processor Traditional HW/SW Partitioning

0%

25%

50%

75%

100%

bre
v

g3
fax url

roc
m

pk
tflo

w
ca

nrd
r

bit
mnp

tbl
oo

k
tts

prk
matr

ix idc
t

g7
21

mpe
g2 fir

matm
ul

Ave
rag

e:

Med
ian

:

Benchmarks

%
 E

ne
rg

y
R

ed
uc

tio
n Warp Processor Traditional HW/SW Partitioning

hardware resources within the W-FPGA design and to the simplicity of the W-FPGA’s
configurable logic fabric.

Fig. 10 and Fig. 11 present the overall application speedup and energy reduction
using warp processors (supporting up to four critical regions) and traditional
hardware/software partitioning targeting an FPGA for all 15 benchmarks using the
operating and power consumption ratios summarized in Table II. On average, warp
processors provide an overall application speedup of 6.3X while reducing energy
consumption by 66%. Alternatively, the traditional hardware/software partitioning
targeting an FPGA results in an average overall application speedup of 6X and an energy
reduction of 56%. For two applications, brev and matmul, warp processors achieve a
speedup greater than 10X while reducing energy consumption by more than 80%.

We analyzed the energy consumption of warp processors compared to several
different processor alternatives, ranging from processors designed for low power to
voltage scalable processors to high performance processors. Fig. 12 presents the average
critical region energy consumption of all 15 benchmark applications for 10 different
processor configurations, normalized to the energy consumption of the XScale processor
executing at the maximum possible frequency of 502 MHz. While executing the
benchmarks’ critical kernels on an Intel Pentium 4 processor may provide extremely fast
execution, the power demands of the Pentium processor lead to extremely high energy
consumption, requiring roughly 15X to 24X more energy than the XScale processor.
While high performance processors are typically not designed for low power
consumption, voltage scalable processors are designed for flexibility in performance and
power consumption by allowing a designer to adjust both the operating voltage and
frequency. By reducing the operating voltage and frequency of the XScale processor, we
can execute the XScale processor at 102 MHz while reducing energy consumption by
22%. Alternatively, many processors are designed to provide low power consumption,
such as the ARM family of processors, and can often be found in embedded systems
where battery lifetime is a primary concern. Although the 100 MHz ARM7 is the slowest
processor, the ARM7 provides the lowest energy consumption of the traditional
processors we evaluated. However, a warp processor incorporating a 100 MHz ARM7
processor and our W-FPGA achieves the lowest overall energy consumption, requiring
less than 5% of the energy consumed by the XScale processor and approximately one
fifth of one percent of the energy consumed by the Pentium 4 processor.

Finally, we evaluated the area required to implement our W-FPGA. As described
earlier, we synthesized the VHDL implementation of our W-FPGA using Synopsys
Design Compiler targeting the UMC 0.18 µm technology library. Our configurable logic

Fig. 12: Average overall energy consumption of NetBench, MediaBench, EEMBC, and Powerstone benchmark
applications using various processors normalized to XScale processor at 502 MHz (processor frequency

reported in megahertz).

2415

0.0020.0
0.2
0.4
0.6
0.8
1.0

Warp
 P

roc
.(1

00
)

ARM7(1
00

) +
 FPGA

ARM7 (
10

0)

ARM9 (
25

0)

ARM10
 (3

25
)

ARM11
 (5

50
)

Xsc
ale

 (1
04

)

Xsc
ale

 (5
02

)

Pen
tiu

m 4
(34

00
)

Pen
tiu

m 4
(13

00
)

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

architecture, including the address generators, multiply-accumulator, and supporting
logic, has an area of 14.2 mm2, roughly corresponding to 852,000 gates. Compared to a
low power processor utilized for the main processor with our warp processor design, the
W-FPGA requires 3X more area than an ARM7 processor with an 8 kilobyte cache.
However, our configurable logic architecture only requires 1.2X more area than an
ARM9 with 32 kilobytes of cache, a reasonable choice for the main processor. Thus,
when combined with the main processor, a warp processor achieves an average speedup
of 6.3X using between 2.2X and 4X more area than a small low power processor alone.
As an alternative comparison, our W-FPGA is approximately equivalent in area to a 64
kilobyte cache.

Additionally, for each benchmark application we determined the amount of resources
required to implement the application’s critical kernels within the W-FPGA’s routing-
oriented configurable logic fabric. Fig. 13 presents the percentage of configurable logic
blocks and routing resources within our RCLF required to implement the critical regions
of the NetBench, MediaBench, EEMBC, and Powerstone benchmark applications. On
average, the applications’ critical kernels required 12% of the available CLBs and 39% of
the routing resources. pktflow required the largest amount of resources, utilizing 33% of
the CLBs and 73% or the routing resources to implement the application’s critical
kernels. On the other extreme, brev requires the fewest resources within the RCLF, only
utilizing 5% of the routing resources.

7. CONCLUSIONS AND FUTURE WORK

Our work demonstrates that the basic concept of warp processing, namely the concept of
dynamically mapping software kernels to on-chip FPGA for performance and energy
improvements, is possible. Although the work described in this paper is extensive,
involving several years of development and showing reasonable speedups of 6.3X and
energy savings of 66% (and up to 10X and 80% on some examples) considering several
standard benchmarks, extensive future work is still required. Better speedups and energy
savings may be obtained through improved but still lean partitioning, synthesis,
placement, and routing, through advanced decompilation methods that can detect higher-
level constructs, and through the use of embedded multipliers, block RAMs, and other
components. Another hurdle to be overcome is the memory bottleneck, which limits
speedups in many benchmarks. Advanced memory access methods may reduce this
bottleneck, and we are investigating this direction [Stitt et al. 2005]. Improving the warp-
oriented FPGA represents another direction for further improvements; we are presently
fabricating a prototype of the W-FPGA through collaboration with Intel as an effort in
that direction. Furthermore, study of desktop-based applications is needed to determine
the extent to which warp processing can improve such applications, which may involve

Fig. 13: Percentage of RCLF configurable logic blocks (CLBs) and routing resources used to implement
critical regions of NetBench, MediaBench, EEMBC, and Powerstone benchmark applications.

0%

20%

40%

60%

80%

100%

bre
v

g3
fax url

roc
m

pk
tflo

w
ca

nrd
r

bit
mnp

tbl
oo

k
tts

prk
matr

ix idc
t

g7
21

mpe
g2 fir

matm
ul

Ave
rag

e

Benchmarks

%
 R

es
ou

rc
es

CLBs Routing

pointers, extensive access to data structures in memory, and execution spread over more
regions than is typical in embedded applications. For both embedded and desktop
applications, we also need to address the impact and interplay of an operating system
executing within our warp processor architecture. As the operating system is an essential
component in scheduling the software execution and managing hardware resources, the
operating system needs to be aware of warp processing and potentially control the warp
processor’s dynamic partitioning. Additionally, studies must be done to compare warp
processing’s use of silicon area to other uses that could also speedup up software
binaries. Yet, the impressive demonstrated 100X-1000X speedups of existing
hardware/software partitioning methods mean that the potential benefits of warp
processing are quite significant.

REFERENCES
ALTERA CORP. 2006. Customer Showcase. http://www.altera.com/corporate/

cust_successes/customer_showcase/view_product/csh-vproduct-nios.jsp.
ALTERA CORP. 2005. Excalibur Embedded Processor Solutions.

http://www.altera.com/products/devices/excalibur/exc-index.html.
ATMEL CORP. 2005. FPSLIC (AVR with FPGA), http://www.atmel.com/products/FPSLIC/.
BALBONI, A., FORNACIARI W., AND SCIUTO, D. 1996. Partitioning and Exploration in the TOSCA Co-Design

Flow. In Proceedings of the International Workshop on Hardware/Software Codesign (CODES), pp. 62-69.
BANERJEE, P., MITTAL, G., ZARETSKY, D., AND TANG, X. 2004. BINACHIP-FPGA: A Tool to Map DSP

Software Binaries and Assembly Programs onto FPGAs. In Proceedings of the Embedded Signal Processing
Conference (GSPx).

BERKELEY DESIGN TECHNOLOGY, INC. 2004.
http://www.bdti.com/articles/info_eet0207fpga.htm#DSPEnhanced%20FPGAs.

BETZ, V., ROSE, J., AND MARQUARDT, A. 1999. Architecture and CAD for Deep-Submicron FPGAs. Kluwer
Academic Publishers.

BETZ, V., AND ROSE, J. 1997. VPR: A New Packing, Placement, and Routing for FPGA Research. In
Proceedings of the International Workshop on Field Programmable Logic and Applications (FPLA), pp. 213-
222.

BÖHM, W., HAMMES, J., DRAPER, B., CHAWATHE, M., ROSS, C., RINKER, R., AND NAJJAR, W. 2002. Mapping a
Single Assignment Programming Language to Reconfigurable Systems. The Journal of Supercomputing,
Vol. 21, pp. 117-130.

BRELAZ, D. 1979. New Methods to Color the Vertices of a Graph. Communication of the ACM 22, 251-256.
BURGER, D. AND AUSTIN, T. 1997. The SimpleScalar Tool Set, version 2.0. SIGARCH Computer Architecture

News, Vol. 25, No. 3.
CHEN, W., KOSMAS, P., LEESER, M., AND RAPPAPORT, C.. 2004. An FPGA Implementation of the Two-

Dimensional Finite-Difference Time-Domain (FDTD) Algorithm. In Proceedings of the International
Symposium on Field-Programmable Gate Arrays (FPGA), pp. 97-105.

CHRISTENSEN, F. 2004. A Scalable Software-Defined Radio Development System. Xcell Journal, Winter 2004.
CHOW, P., SEO, S., ROSE, J., CHUNG, K., PAEZ-MONZON, G., AND RAHARDJA, I. 1999. The Design of an SRAM-

Based Field-Programmable Gate Array, Part I: Architecture. IEEE Transactions on Very Large Scale
Integration Systems (TVLSI), Vol. 7, No. 2, pp. 191-197.

CIFUENTES, C. 1996. Structuring Decompiled Graphs. In Proceedings of the International Conference on
Compiler Construction, Lecture Notes in Computer Science, Vol. 1060, pg. 91-105.

CIFUENTES, C., SIMON, D., AND FRABOULET, A. 1998. Assembly to High-Level Language Translation.
Department of Computer Science and Electrical Engineering, University of Queensland. Technical Report
439.

CIFUENTES, C., VAN EMMERIK, M., UNG, D., SIMON, D., AND WADDINGTON, T. 1999. Preliminary Experiences
with the Use of the UQBT Binary Translation Framework. In Proceedings of the Workshop on Binary
Translation, pp. 12-22.

CRITICAL BLUE. 2005. http://www.criticalblue.com.
D.H. BROWN ASSOCIATES. 2004. Cray XD1 Brings High-Bandwidth Supercomputing to the Mid-Market.

White Paper prepared for Cray, Inc., http://www.cray.com/downloads/dhbrown_crayxd1_oct2004.pdf.
EEMBC. 2005. The Embedded Microprocessor Benchmark Consortium. http://www.eembc.org.
ELES, P., PENG, Z., KUCHCHINSKI, K., AND DOBOLI, A. 1997. System Level Hardware/Software Partitioning

Based on Simulated Annealing and Tabu Search. Kluwer's Design Automation for Embedded Systems, Vol.
2, No. 1, pp. 5-32.

ERNST, R., HENKEL, J., AND BENNER, T. 1993. Hardware-Software Cosynthesis for Microcontrollers. IEEE
Design & Test of Computers, Vol. 10, No. 4, pp. 64-75.

GAJSKI, D., VAHID, F., NARAYAN, S., AND GONG, J. 1998. SpecSyn: An Environment Supporting the Specify-
Explore-Refine Paradigm for Hardware/Software System Design. IEEE Transactions on Very Large Scale
Integration System (TVLSI), Vol. 6, No. 1, pp. 84-100.

GOKHALE, M. AND STONE, J. 1998. NAPA C: Compiling for hybrid RISC/FPGA architectures. In Proceedings
of the Symposium on FPGAs for Custom Computing Machines (FCCM), p. 126.

GORDON-ROSS, A. AND VAHID, F. 2003. Frequent Loop Detection Using Efficient Non-Intrusive On-Chip
Hardware. In Proceedings of the Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), pp. 117-124.

GUO, Z., BUYUKKURT, B., NAJJAR, W., AND VISSERS, K. 2005. Optimized Generation of Data-Path from C
Codes. In Proceedings of the Design Automation and Test in Europe Conference (DATE), pp. 112-117.

HAUSER, J. AND WAWRZYNEK, J. 1997. Garp: a MIPS processor with a reconfigurable coprocessor. In
Proceedings of the Symposium on FPGAs for Custom Computing Machines (FCCM), pp. 12-21.

HENKEL, J. AND ERNST, R. 1997. A Hardware/Software Partitioner using a Dynamically Determined
Granularity. In Proceedings of the Design Automation Conference (DAC), pp. 691-696.

KEANE, J., BRADLEY, C., AND EBELING, C. 2004. A Compiled Accelerator for Biological Cell Signaling
Simulations. In Proceedings of the International Symposium on Field-Programmable Gate Arrays (FPGA),
pp. 233-241.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications Systems. In Proceedings of the International Symposium on
Microarchitecture (MICRO), pp. 330-335.

LYSECKY, R., COTTERELL, S., AND VAHID, F. 2004a. A Fast On-Chip Profiler Memory using a Pipelined Binary
Tree. IEEE Transaction on Very Large Scale Integration (TVLSI), Vol. 12, No. 1, pp. 120-122.

LYSECKY, R. AND VAHID, F. 2004. A Configurable Logic Architecture for Dynamic Hardware/Software
Partitioning. In Proceedings of the Design Automation and Test in Europe Conference (DATE), p. 10480.

LYSECKY, R. AND VAHID, F. 2003. On-chip Logic Minimization. In Proceedings of the Design Automation
Conference (DAC), pp. 334-337.

LYSECKY, R., VAHID, F., AND TAN, S. 2005. A Study of the Scalability of On-Chip Routing for Just-in-Time
FPGA Compilation. In Proceedings of the Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 57-62.

LYSECKY, R., VAHID, F., AND TAN, S. 2004b. Dynamic FPGA Routing for Just-in-Time FPGA Compilation. In
Proceedings of the Design Automation Conference (DAC), pp. 954-959.

MALIK, A., MOYER, B., AND CERMAK, D. 2000. A Low Power Unified Cache Architecture Providing Power and
Performance Flexibility. In Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), pp. 241-243.

MARQUARDT, A., BETZ, V., AND ROSE, J. 2000. Speed and Area Trade-offs on Cluster-based FPGA
Architectures. IEEE Transactions on Very Large Scale Integration Systems (TVLSI), Vol. 8, No. 1, pp. 84-
93.

MATSUMOTO, C. 2000. Triscend adds 32-bit configurable SoC line. EE Times,
http://www.eet.com/story/OEG20000828S0015.

MEMIK, G., MANGIONE-SMITH, W., AND HU, W. 2001. NetBench: A Benchmarking Suite for Network
Processors. In Proceedings of the International Conference on Computer-Aided Design (ICCAD), pp. 39-42.

Mittal, G., ZARETSKY, D., TANG, X., AND BANERJEE, P. 2004. Automatic Translation of Software Binaries onto
FPGAs. In Proceedings of the Design Automation Conference (DAC), pp. 389-394.

MORRIS, K. 2005. Cray goes FPGA. FPGA and Programmable Logic Journal, April 2005.
PRESS, W., FLANNERY, B., TEUKOLSKY, S., AND VETTERLING, W. 1992. Numerical Recipes in C: The Art of

Scientific Computing. Cambridge University Press.
SINGH, S., ROSE, J., CHOW, P., AND LEWIS, D. 1992. The Effect of Logic Block Architecture on FPGA

Performance. IEEE Journal of Solid-State Circuits, Vol. 27, No. 3, pp. 3-12.
STITT, G., LYSECKY, R., AND VAHID, F. 2003. Dynamic Hardware/Software Partitioning: A First Approach. In

Proceedings of the Design Automation Conference (DAC), pp. 250-255.
STITT, G. AND VAHID, F. 2005. New Decompilation Techniques for Binary-level Co-processor Generation. In

Proceedings of the International Conference on Computer Aided Design (ICCAD).
STITT, G. AND VAHID, F. 2002. Hardware/Software Partitioning of Software Binaries. In Proceedings of the

International Conference on Computer Aided Design (ICCAD), pp. 164-170.
STITT, G., VAHID, F., MCGREGOR, G., AND EINLOTH, B. 2005. Hardware/Software Partitioning of Software

Binaries: A Case Study of H.264 Decode. In Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 285-290.

TENSILICA, INC. 2006. XPRES Compiler, Automatically Generate Processors from Standard C Code.
http://www.tensilica.com/products/ xpres.htm.

TRISCEND CORP. 2003. http://www.triscend.com.
VENKATARAMANI, G., NAJJAR, W., KURDAHI, F., BAGHERZADEH, N., AND BOHM, W. 2001. A Compiler

Framework for Mapping Applications to a Coarse-grained Reconfigurable Computer Architecture. In
Proceedings of the Conference on Compiler, Architecture, and Synthesis for Embedded Systems (CASES),
pp. 116-125.

VISSERS, K. 2004. Programming Models and Architectures for FPGAs. Keynote talk at Conference on
Compiler, Architecture and Synthesis for Embedded Systems (CASES).

XILINX, INC. 2006. http://www.xilinx.com.
XILINX, INC. 2005a. Customer Success Stories,

http://www.xilinx.com/company/success/csprod.htm#embedded.
XILINX, INC. 2005b. Virtex-4 FPGAs,

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm.
XILINX, INC. 2004a. Partnering for Success, Xilinx and Photonic Bridges.

http://www.xilinx.com/ipcenter/processor_central/embedded/success_PB.pdf.
XILINX, INC. 2004b. Virtex-II Pro/ProX FPGAs,

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_pro_fpgas/.
XILINX, INC. 2000a. Xilinx Introduces High Level Language Compiler for Virtex FPGAs. Xilinx Press Release.

http://www.xilinx.com/prs_rls/00119_forge.htm.
XILINX, INC. 2000b. Xilinx Version 3.3i Software Doubles Clock Frequencies. Xilinx Press Release.

http://www.xilinx.com/prs_rls/00118_3_3i.htm.
ZAGHA, M., B. LARSON, S. TURNER, AND M. ITZKOWITZ. 1996. Performance Analysis Using the MIPS R10000

Performance Counters. In the Proceeding of the Conference on Supercomputing, Article No. 16.
ZHANG, X., WANG, Z., GLOY, N., CHEN, J. B., AND SMITH, M. D. 1997. System Support for automatic Profiling

and Optimization. In Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP),
pp. 15-26.

ZILLES, C. B. AND G. S. SOHI. 2001. A Programmable Co-processor for Profiling. In Proceedings of the
International Symposium on High-Performance Computer Architectures, 241.

Received July 2005; revised November 2005; accepted March 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

