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We describe a new processing architecture, known as a warp processor, that utilizes a field-programmable gate 
array (FPGA) to improve the speed and energy consumption of a software binary executing on a 
microprocessor. Unlike previous approaches that also improve software using an FPGA but do so using a 
special compiler, a warp processor achieves those improvements completely transparently and operates from a 
standard binary. A warp processor dynamically detects the binary’s critical regions, re-implements those 
regions as a custom hardware circuit in the FPGA, and replaces the software region by a call to the new 
hardware implementation of that region. While not all benchmarks can be improved using warp processing, 
many can, and the improvements are dramatically better than achievable by more traditional architecture 
improvements. The hardest part of warp processing is that of dynamically re-implementing code regions on an 
FPGA, requiring partitioning, decompilation, synthesis, placement, and routing tools, all having to execute with 
minimal computation time and data memory so as to coexist on-chip with the main processor. We describe our 
results of developing a warp processor. We developed a custom FPGA fabric specifically designed to enable 
lean place and route tools, and we developed extremely fast and efficient versions of partitioning, 
decompilation, synthesis, technology mapping, placement, and routing. Warp processors achieve overall 
application speedups of 6.3X with energy savings of 66% across a set of embedded benchmark applications. We 
further show that our tools utilize an acceptably small amount of computation and memory, far less than 
traditional tools. Our work illustrates the feasibility and potential of warp processing, and one can foresee the 
possibility of warp processing becoming a feature in a variety of computing domains, including desktop, server, 
and embedded applications. 
 
Categories and Subject Descriptors: C.1.3 [Processor Architectures] Other Architecture Styles - Adaptable 
Architectures; C.3 [Computer Systems Organization] Special-Purpose and Application-Based Systems - 
Real-time and Embedded Systems 
General Terms: Design, Performance, Experimentation 
Additional Key Words and Phrases: Warp processors, hardware/software partitioning, FPGA, configurable 
logic, just-in-time (JIT) compilation, dynamic optimization, hardware/software codesign. 
________________________________________________________________________ 
 
 
1. INTRODUCTION 

Extensive research over the past two decades has demonstrated the benefits that often can 
be obtained by re-implementing a software application’s critical regions, or critical 
kernels, as a custom circuit coprocessor on a field-programmable gate array (FPGA). 
While many products today feature such coprocessors on FPGAs alongside a 
microprocessor [Altera 2006; Christensen 2004; D.H. Brown Associates 2004; Morris 
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2005; Xilinx 2005a; Xilinx 2004a], and while recent commercial compilers offer to 
automatically partition critical software regions to FPGAs or ASICs [Critical Blue 2005] 
or to create custom coprocessors tightly integrated within the processor itself [Tensilica 
2006], the significantly different and costlier tool flows associated with FPGA 
coprocessors has prevented the use of such coprocessors in mainstream software flows.  

We define a software application’s critical region as a loop or subroutine that is 
frequently executed, accounting for perhaps 10% or more of total application execution 
time. For many applications, the majority of execution time may come from just a few 
critical regions. Therefore, while speeding up a critical region accounting only for 10% of 
the execution time may not provide extremely high overall speedups by itself, by 
speeding up several such critical regions, the overall performance improvement can be 
significant. Implementing a critical region on an FPGA, commonly called 
hardware/software partitioning, can sometimes result in high speedups of 100X-1000X or 
more for that region. Of course, the impact of this speedup on overall application speedup 
depends on the percentage contribution of the region to overall application execution 
time, per Amdahl’s Law. Furthermore, not all applications have regions amenable to 
speedup with an FPGA. Nevertheless, for many applications, researchers and commercial 
vendors have observed overall application speedups of 10X-100X [Balboni et al. 1996; 
Berkeley Design Technology 2004; Chen et al. 2004; Eles et al. 1997; Ernst et al. 1993; 
Gajski et al. 1998; Guo et al. 2005; Henkel and Ernst 1997; Keane et al. 2004; Stitt and 
Vahid 2005; Stitt et al. 2005], and in some cases approaching 1000X [Böhm et al. 2002; 
Venkataramani et al. 2001], obtained by implementing critical regions on an FPGA.  

The advent of single-chip microprocessor/FPGA devices makes hardware/software 
partitioning even more attractive. Such devices include one or more microprocessors, and 
an FPGA fabric, on a single chip, and typically include efficient mechanisms for 
communication between the microprocessor and FPGA, along with shared memory. Such 
devices first appeared in the late 1990s from Atmel [Atmel 2005] and Triscend 
[Matsumoto 2000; Triscend 2003] with low end microprocessors and FPGAs supporting 
tens of thousands of gates. Altera developed Excalibur devices incorporating an ARM9 
processor and million-gate FPGA fabric [Altera 2005]. Xilinx offers the Virtex-II Pro 
[Xilinx 2004b] and Virtex-4 FX [Xilinx 2005b] devices incorporating one or more 
PowerPC processors with an FPGA fabric having tens of millions of gates. These devices 
all implement the processors as hard cores, not as a circuit mapped onto the FPGA fabric 
itself. Given the appearance of FPGAs supporting tens of millions of gates, and soon 
hundreds of millions of gates, and knowing that microprocessors may require only tens or 
hundreds of thousands of gates, we can also see that any FPGA can implement 
microprocessors as soft cores mapped on the FPGA fabric itself. 

Electronically programming bits onto an FPGA is fundamentally the same as 
programming a microprocessor. Like a microprocessor, an FPGA is an off-the-shelf part. 
We can program an FPGA by downloading a bitstream into the FPGA’s memory, just as 
we program a microprocessor. Thus, conceptually, a compiler can partition an application 
into a microprocessor part and an FPGA coprocessor part, and indeed such compilers do 
exist, although mostly in the research domain [Balboni et al. 1996; Böhm et al. 2002; 
Critical Blue 2005; Eles et al. 1997; Gajski et al. 1998; Gokhale and Stone 1998; Hauser 
and Wawrzynek 1997; Henkel and Ernst 1997; Stitt and Vahid 2002; Xilinx 2000a]. 
Unfortunately, such compilers require a significant departure from traditional software 
tool flows. First, the compiler must determine the critical regions of a software 
application, and such determination typically requires profiling. Profiling, while 
conceptually straightforward, is often not a standard part of compilation – especially in 
embedded systems, where executing an application often involves complicated time-
dependent interactions with the application’s environment, making setting up simulations 
difficult. Second, the compiler must generate a binary for the microprocessor and a 



binary for the FPGA coprocessor, and the latter is by no means standard. Thus, 
partitioning compilers lose the important concept of a standard binary and the associated 
benefits of portability. 

Recently, researchers showed that by using decompilation techniques, designers could 
perform desktop hardware/software partitioning starting from binaries rather than from 
high-level code, with competitive resulting performance and energy [Banerjee et al. 
2004; Mittal et al. 2004; Stitt and Vahid 2005; Stitt and Vahid 2002]. Binary-level 
partitioning opens the door to dynamic hardware/software partitioning, in which an 
executing binary is dynamically and transparently optimized by moving software kernels 
to on-chip configurable logic, a process we call warp processing. Warp processors, 
originally proposed in [Stitt, Lysecky, and Vahid 2003], provide designers with the 
ability to program using a high level language, such as C, while exploiting the underlying 
FPGA to improve performance and reduce energy consumption with no required 
knowledge of the FPGA. Such transparent optimizations can be quite beneficial, as 
programming in a high level language is about 5X more productive compared to 
programming in VHDL [Vissers 2004].  

 
2. FPGA COPROCESSING 

Implementing a critical region as a circuit on an FPGA may yield high performance 
speedups compared to implementing the critical region on a microprocessor when the 
critical region involves extensive bit-level manipulation or the critical region’s code is 
highly parallelizable.  

Bit-level operations are much less efficient on a microprocessor because each bit-
level operation requires a separate instruction or several instructions. An example of the 
efficiency of FPGA bit-level manipulations is a bit reversal operation, shown in Fig. 1. 
Fig. 1 (a) presents an efficient software implementation of a bit reversal that requires 
approximately 64 instructions to reverse one 32-bit integer [Press et al. 1992]. Depending 
on the microprocessor, these 64 instructions could require anywhere from 32 to 128 
cycles to complete. However, as shown in Fig. 1 (b), a bit-reversal implemented as a 
hardware circuit in an FPGA requires only wires to compute the bit reversal and can be 
performed in a single cycle achieving a speedup ranging from 32X to 128X (assuming 
equal cycle lengths). 

Furthermore, an FPGA can generally implement parallelizable code much more 
efficiently even when compared to a VLIW (Very Large Instruction Word) or multiple-
issue microprocessor. Whereas a microprocessor might be able to execute several 

Fig. 1. A comparison of a bit reversal in (a) software on a microprocessor and (b) hardware on an FPGA. 
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operations in parallel, an FPGA can potentially implement thousands of operations in 
parallel. The finite impulse response (FIR) filter shown in Fig. 2 is an example of highly 
parallelizable code that can potentially greatly benefit by implementing the code on an 
FPGA. Fig. 2 (a) shows the execution of the FIR filter on a microprocessor requiring 
many multiply-accumulate operations and executing for thousands of cycles. 
Alternatively, Fig. 2 (b) shows an FPGA implementation of the FIR filter in which the 
hardware circuit within the FPGA performs multiplications in parallel and implements 
the accumulation as a tree of adders (assuming sufficient FPGA resources). By 
parallelizing the multiply-accumulate operations, the FPGA implementation can achieve 
a speedup of at least 100X. 

 
3. COMPONENTS OF A WARP PROCESSOR 

Fig. 3 provides an overview of a warp processor, highlighting the steps performed during 
dynamic hardware/software partitioning. A warp processor consists of a main processor 
with instruction and data caches, an efficient on-chip profiler, our warp-oriented FPGA 

Fig. 2. FIR filter implemented in (a) software on a microprocessor and (b) hardware on an FPGA. 
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(W-FPGA), and an on-chip computer-aided design module. Initially, a software 
application executing on a warp processor will execute only on the main processor. 
During execution of the application, the profiler monitors the execution behavior of the 
application to determine the critical kernels within the application. After identifying the 
critical regions, the on-chip CAD module executes the Riverside On-Chip CAD tools 
(ROCCAD) to re-implement the critical software regions as a custom hardware 
component within the W-FPGA.  

We include a profiler within each warp processor to determine the critical kernels 
within the executing application that the warp processor could implement as hardware. 
Dynamic profiling is a widely studied problem for which many solutions exist [Lysecky 
et al. 2004a; Zagha et al. 1996; Zhang et al. 1997; Zilles and Sohi 2001]. Typical profilers 
instrument code, thus changing program behavior and requiring extra tools. Instead, we 
incorporate a non-intrusive profiler that monitors the instruction addresses seen on the 
memory bus [Gordon-Ross and Vahid 2003]. The profiler non-intrusively monitors the 
instruction addresses on the instruction memory bus. Whenever a backward branch 
occurs, the profiler updates a cache of 16 8-bit entries that store the branch frequencies. 
When any of the registers storing the branch frequencies become saturated, the profiler 
shifts all 16 registers right by one bit, thereby maintaining a list of relative branch 
frequencies while ensuring all branch frequency registers do not eventually become 
saturated. The profiler uses roughly 2000 gates along with a small cache with only a few 
dozen entries with a small associativity to save area and power. Furthermore, through 
simulations of our warp processor design, we have found that the profiler can accurately 
determine the critical regions of an application within ten branch frequency register 
saturations. Using this methodology, the profiler is able to properly select the correct 
critical kernels for partitioning for all applications we considered. Further details of the 
profiler design and accuracy can be found in [Gordon-Ross and Vahid 2003]. 

After profiling the application to determine the critical regions, the on-chip CAD 
module executes our partitioning, synthesis, mapping, and routing algorithms. ROCCAD 
first analyzes the profiling results for the executing application and determines which 
critical region the warp processor should implement in hardware. After selecting the 
software region to implement in hardware, ROCCAD decompiles the critical region into 
a control/dataflow graph and synthesizes the critical kernel to produce an optimized 
hardware circuit that is then mapped onto our warp-oriented FPGA through technology 
mapping, placement, and routing. Finally, ROCCAD configures the configurable logic 
and updates the executing application’s binary code to utilize the hardware within the 
configurable logic fabric. During the binary update, the warp processor must ensure that 
the main processor is not currently executing within the critical region.  

Currently, we implement the on-chip CAD module as a separate ARM7 processor 
including caches and separate instruction and data memories, which can either be located 
on-chip or off-chip depending on what is acceptable for a given warp processor 
implementation. Alternatively, we could eliminate the need for the on-chip CAD module 
by executing our on-chip CAD tools as a software task on the main processor sharing 
computation and memory resources with the main application. We can also envision a 
multiprocessor system in which we incorporate multiple warp processors on a single 
device. In such a system, there is no need to also incorporate multiple on-chip CAD 
modules, as a single on-chip CAD module is sufficient for supporting each of the 
processors in a round robin or similar fashion. Furthermore, we can again implement the 
CAD tools as a software task executing on any of the multiple processors. 

Finally, after re-implementing an application’s critical kernels as hardware, 
programming the W-FPGA with the hardware configuration, and updating the 
applications binary to interface with the hardware, the application executes on the warp 
processor using a mutually exclusive execution model, whereby either the main processor 



or the W-FPGA is active at any given time. Using this implementation, the main 
processor and W-FPGA can access the same data cache, thereby avoiding any cache 
coherency and/or consistency issues. Furthermore, we examined the potential benefits of 
allowing parallel execution of the processor and configurable logic fabric and found that 
parallel execution did not yield significant performance improvements for most 
applications.  

In simulating our warp processor design, our warp processor provides excellent 
performance and energy benefits for the embedded applications we analyzed in this 
paper. Warp processing is ideally suited for embedded systems that repeatedly execute 
the same application, or set of applications, for extended periods, and especially for 
systems in which software updates and backwards compatibility is essential. As such, a 
warp processor can quickly determine which critical regions to implement in hardware 
and continue to utilize the same hardware configuration either for the duration of the 
product’s lifetime or until the software is updated. However, warp processing can also be 
incorporated into other domains such as desktop computing, high performance servers, 
personal digital assistants, etc. Within these domains, warp processing could prove to be 
extremely useful for data intensive applications such as image or video processing, data 
analysis, scientific research, or even games, as these applications typically execute for an 
extended period of time during which the warp processor could partition the critical 
kernels to hardware. Additionally, short running applications that execute many times can 
also benefit from warp processing, as long as the warp processor can remember the 
application’s hardware configuration.  

 
4. WARP-ORIENTED FPGA 

Fig. 4 shows the overall organization of our W-FPGA consisting of a data address 
generator (DADG) with loop control hardware (LCH), three input and output registers, a 
32-bit multiplier-accumulator (MAC), and our routing-oriented configurable logic fabric 
(RCLF) presented in [Lysecky and Vahid 2004]. The W-FPGA handles all memory 
accesses to and from the configurable logic using the data address generator. 
Furthermore, the data retrieved and stored to and from each array is located within one of 
the three registers Reg0, Reg1, and Reg2. These three registers also act as the inputs to 
the configurable logic fabric and can be mapped as inputs to the 32-bit multiplier-
accumulator or directly mapped to the configurable logic fabric. Finally, we connect the 
outputs from the configurable logic fabric as inputs to the three registers using a 
dedicated bus. 

Since we are targeting critical loops that usually iterate many times before 
completion, the W-FPGA must be able to access memory and to control the execution of 
the loop. We include a data address generator with loop control hardware in our FPGA 

Fig. 4. Warp-oriented Field Programmable Gate Array (W-FPGA). 
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design to handle all memory accesses as well as to control the execution of the loop. The 
data address generator within the W-FPGA can handle memory accesses that follow 
regular access patterns. Such data address generators and loop control hardware are often 
incorporated in digital signal processors to achieve zero loop overhead, meaning that 
cycles are not wasted computing loop bounds and sequential memory addresses. Loop 
control hardware typically is capable of executing a loop for a specific number of 
iterations. While we can determine the loop bounds for many critical loops, loops can 
also contain control code within the loop that terminates the loop’s execution. For 
example, in a C/C++ implementation to perform a lookup in an array, once we have 
found the desired value, we will typically terminate the loop’s execution using a break 
statement. Therefore, the loop control hardware within the W-FPGA will control the 
loop’s iterations assuming a predetermined number of iterations, but allows for 
terminating the loop’s execution using an output from the configurable logic fabric. 

Of the applications we have analyzed in developing warp processors, we frequently 
found common operations within the application’s critical regions, including addition, 
subtraction, and multiplication. Furthermore, while we often see multiplications in the 
critical code regions, they are often in the form of a multiply-accumulate operation. 
Implementing a multiplier with a small configurable logic fabric is generally slow and 
requires a large amount of logic and routing resources. Therefore, we include a dedicated 
multiplier-accumulator within the W-FPGA to conserve resources and provide fast 
performance.  

Fig. 5 (a) shows our routing-oriented configurable logic fabric, presented in [Lysecky 
and Vahid 2004]. Our RCLF consists of an array of configurable logic blocks (CLBs) 
surrounded by switch matrices for routing between CLBs. Each CLB is connected to a 
single switch matrix to which all inputs and outputs of the CLB are connected. We handle 
routing between CLBs using the switch matrices, which can route signals in one of four 

Fig. 5. (a) Routing-oriented configurable logic fabric, (b) combinational logic block, and (c) switch matrix 
architecture. 
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directions to an adjacent SM (represented as solid lines) or to a SM two rows apart 
vertically or two columns apart horizontally (represented as dashed lines). 

Fig. 5 (b) shows our combinational logic block architecture. Each CLB consists of 
two 3-input 2-output LUTs, which provides the equivalent of a CLB consisting of four 3-
input single output LUTs with fixed internal routing. We chose 3-input 2-output LUTs to 
simplify our technology mapping and placement algorithms by restricting the choices our 
tools will analyze in determining the final circuit configuration. Additionally, the CLBs 
are capable of supporting carry chains through direct connections between horizontally 
adjacent CLBs and within the CLBs through internal connections between adjacent 
LUTs. Hardware components, such as adders, comparators, etc., frequently require carry 
logic and so providing support for carry chains simplifies the required routing for many 
hardware circuits. 

The size of our LUTs and CLBs is very important as the size directly impacts area 
resources and delays within our configurable logic fabric, as well as the complexity of the 
tools needed to map a circuit to our configurable logic fabric. Several studies have 
analyzed the impacts of LUT size on both area and timing [Chow et al. 1999; Singh et al. 
1992]. These studies have shown that look-up tables with five or six inputs result in 
circuits with the best performance, while LUTs with three of four inputs are still 
reasonable. Another study analyzed the impacts on cluster size, the number of single 
output LUTs within a CLB, on speed and area of various circuits [Marquardt et al. 2000]. 
Their findings indicate that cluster sizes of 3 to 20 LUTs were feasible, and a cluster size 
of eight produced the best tradeoff between area and delay of the final circuits. However, 
while we would like to incorporate large cluster sizes within our configurable logic 
fabric, such clusters allow more flexibility during technology mapping and placement 
phases, which in turn requires more complex technology mapping and placement 
algorithms to handle the added complexity.  

Finally, Fig. 5 (c) shows our switch matrix architecture. Each switch matrix is 
connected using eight channels on each side of the switch matrix, four short channels 
routing between adjacent nodes and four long channels routing between every other 
switch matrix. Routing through the switch matrix can only connect a wire from one side 
with a given channel to another wire on the same channel but a different side of the 
switch matrix. Additionally, each of the four short channels is paired with a long channel 
and can be connected together within the switch matrix (indicated as a circle where two 
channels intersect) allowing wires to be routed using short and long connections. In other 
words, the switch matrix can route a wire on a single channel between two different sides 
of the switch matrix connecting short, long, or short and long channels. Designing the 
switch matrix in this manner simplifies the routing algorithm by only allowing the router 
to route a wire using a single pair of channels throughout the configurable logic fabric. 

Commercially available FPGAs consist of similar routing resources but typically are 
capable of routing between switch matrices much further apart and often include routing 
channels spanning an entire row or column. While such routing resources are beneficial 
in terms of creating compact designs with less routing overhead, the flexible routing 
resources require complex place and route tools that are not amenable to on-chip 
execution. Therefore, we chose to limit the complexity of routing resources to allow for 
simplified place and route algorithms. In doing so, we are able to develop a set of fast, 
lean place and route tools that can execute 10X faster using 18X less memory than 
existing desktop-based place and route tools [Lysecky et al. 2005]. While our 
configurable logic design is fundamentally similar to existing FPGAs and can achieve 
comparable performance to existing commercial FPGAs for many circuits, our 
configurable logic’s limited routing resources results in lower clock frequencies for large 
circuits that require a large percentage of the routing resources. However, for partitioning 
SW kernels, the inclusion of the data address generator and multiply-accumulator within 



our W-FPGA reduces the complexity and size of the circuit implemented on the 
configurable logic, thereby allowing for faster clock frequencies and alleviating any 
potential degradation in performance. The interested reader can find further details on the 
configurable logic fabric design in [Lysecky and Vahid 2004]. 

 
5. RIVERSIDE ON-CHIP COMPUTER-AIDED DESIGN TOOLS 

Warp processors require the development of lean versions of partitioning, decompilation, 
behavioral, register-transfer, and logic synthesis, technology mapping, placement, and 
routing algorithms. However, the traditional desktop-based counterparts of these tools 
typically require long execution times often ranging from minutes to hours, large 
amounts of memory resources often exceeding 50 megabytes, and large code size 
possibly requiring hundreds of thousands of lines of source code. However, the on-chip 
CAD algorithms and tools incorporated within warp processors must have very fast 
execution times while using small instruction and data memory resources. Therefore, we 
developed the Riverside On-Chip CAD (ROCCAD) tools, designed specifically to provide 
very fast execution times while minimizing the data amount of memory used during 
execution and providing excellent results. 

Fig. 6 presents the tool chain flow for our on-chip CAD tools, ROCCAD, executed on 
the on-chip CAD module’s processor. Starting with the software binary, decompilation 
converts the software loops into a high-level representation more suitable for synthesis. 
Much of the decompilation techniques we utilize are based on Cifuentes’ work in binary 
translation [Cifuentes et al. 1998; Cifuentes et al. 1999]. Decompilation first converts 
each assembly instruction into equivalent register transfers, which provides an 
instruction-set independent representation of the binary. Once decompilation converts the 
instructions into register transfers, the decompilation tool builds a control flow graph for 
the software region and then constructs a data flow graph by parsing the semantic strings 
for each register transfer. The parser builds trees for each register transfer and then 
combines the trees into a full data flow graph through definition-use and use-definition 
analysis. After creating the control and data flow graphs, the decompiler applies standard 

Fig. 6. ROCCAD on-chip CAD tool chain. 

BinaryBinary

BinaryHW

 Partitioning 

 Behavioral and 
RT Synthesis 

 Decompilation  Binary 
Updater 

Binary Updated 
Binary 

 Technology Mapping

 Placement  

 Logic Synthesis 

 Routing 

 JIT FPGA 
Compilation 



compiler optimizations to remove the overhead introduced by the assembly code and 
instruction set. After recovering a control/data flow graph, the decompilation process 
analyzes the control/data flow graph to recover high-level constructs such as loops and if 
statements [Cifuentes 1996]. 

ROCCAD then performs partitioning by analyzing the critical software kernels 
determined by the on-chip profiler to evaluate which software kernels are most suitable 
for implementing in hardware. Using a simple partitioning heuristic, the partitioning 
algorithm will determine which critical kernels the warp processor will implement within 
the configurable logic architecture to maximize speedup while reducing energy. Next, 
ROCCAD uses behavioral and register-transfer (RT) synthesis to convert the 
control/data flow graph for each critical kernel into a hardware circuit description. The 
register-transfer synthesis then converts the hardware circuit descriptions into a netlist 
format, which specifies the hardware circuits using Boolean expressions for every output 
of the circuit. 

Finally, the on-chip CAD tools will execute the just-in-time (JIT) FPGA compilation 
tools to map the hardware binary onto the underlying configurable logic fabric. The JIT 
FPGA compiler first executes logic synthesis to optimize the hardware circuit. Starting 
with the Boolean equations representing the hardware circuit, the JIT FPGA compiler 
initially creates a directed acyclic graph of the hardware circuit’s Boolean logic network. 
The internal nodes of the graph correspond to any simple two input logic gate, such as 
AND, OR, XOR, NAND, etc. We then perform logic synthesis to optimize the logic 
network using the Riverside On-Chip Minimizer (ROCM), a simple two-level logic 
minimizer presented in [Lysecky and Vahid 2003]. Starting with the input nodes, we 
traverse the logic network in a breadth first manner and apply logic minimization at each 
node. ROCM’s logic minimization algorithm uses a single expand phase to achieve good 
optimization. While a more robust two-level logic minimizer could achieve better 
optimization for larger examples, the simplified algorithm is better suited for the on-chip 
execution of warp processors. 

After logic synthesis, the JIT FPGA compiler performs technology mapping to map 
the hardware circuit onto the CLBs and LUTs of the configurable logic fabric. The 
technology mapper uses a greedy hierarchical graph-clustering algorithm. The technology 
mapping first performs a breadth-first traversal of the input directed acyclic graph starting 
with the output nodes and combines nodes to create LUT nodes corresponding with 3-
input single-output LUTs. Once we identify the single-output LUT nodes, the technology 
mapper again performs a breadth-first traversal starting from the output nodes and 
combines nodes wherever possible to form the final 3-input 2-output LUTs, which are a 
direct mapping to the underlying configurable logic fabric. Finally, the technology 
mapper again traverses the graph now representing the technology mapped hardware 
circuit and packs the LUTs together into CLBs by identifying situations in which we can 
utilize the routing resources between adjacent LUTs, such as when the output from one 
LUT is an input to another LUT. 

After mapping the hardware circuit into a network of CLBs, the JIT FPGA compiler 
places the CLB nodes onto the configurable logic. The placement algorithm is a greedy 
dependency-based positional placement algorithm that first determines a relative 
placement of the CLB nodes within the hardware circuit to each other. The placement 
algorithm starts by determining the critical path within the circuit and places these nodes 
into a single horizontal row within the RCLF. The placement algorithm then analyzes the 
remaining non-placed nodes to determine the dependency between the non-placed nodes 
and the nodes already placed. Based upon these dependencies, for each unplaced node, 
we place the node either above (input to an already placed node) or below (uses an output 
from an already placed node) as close as possible to the dependent node. During this 
placement procedure, the placement algorithm also attempts to utilize the routing 



resources between adjacent CLBs within the RCLF whenever possible. After determining 
the relative placement of LUT nodes, the placement algorithm superimposes and aligns 
the relative placement onto the configurable logic fabric making minor adjustments at the 
edges if needed. 

We then perform routing between inputs, outputs, and CLBs with the configurable 
logic fabric using the Riverside On-Chip Router (ROCR), presented in [Lysecky et al. 
2004b; Lysecky et al. 2005]. ROCR utilizes the general approach of Versatile Place and 
Route’s (VPR’s) routability-driven router allowing overuse of routing resources and 
illegal routes and eliminates illegal routing through repeated routing iterations [Betz et al. 
1999; Betz and Rose 1997]. ROCR starts by initializing the routing costs within a routing 
resource graph representing the configurable logic fabric. For all un-routed nets, ROCR 
uses a greedy routing approach to route the net. During the greedy routing process, for 
each sink within the net, ROCR determines a route between the un-routed sink and net’s 
source or the nearest routed sink. At each step, ROCR restricts the router to only 
choosing paths within a bounding box of the current sink and the chosen location to 
which they are routing. After all nets are routed, if illegal routes exist, the result of 
overusing routing channels, then ROCR rips-up only the illegal routes and adjusts the 
routing costs of the entire routing resource graph. ROCR uses the same routing cost 
model of VPR’s routability-driven router. However, in addition, ROCR incorporates an 
adjustment cost. During the process of ripping-up illegal routes, ROCR adds a small 
routing adjustment cost to all routing resources used by an illegal route. During the 
routing process, an early routing decision can force the routing algorithm to choose a 
congested path. Hence, the routing adjustment cost discourages the greedy routing 
algorithm from selecting the same initial routing and enables the algorithm to attempt a 
different routing path in subsequent routing iterations. Once we determine a valid global 
routing, ROCR performs detailed routing in which we assign the channels used for each 
route. The detailed routing starts by constructing a routing conflict graph. Two routes 
conflict when both routes pass through a given switch matrix and assigning the same 
channel for both routes would result in an illegal routing within the switch matrix. ROCR 
assigns the routing channels by determining a vertex coloring of the routing conflict 
graph. While many approaches for vertex coloring exist, we chose to use Brelaz’s vertex 
coloring algorithms [Brelaz 1979]. Brelaz’s algorithm is a simple greedy algorithm that 
produces good results while not increasing ROCR’s overall memory consumption. If 
ROCR is unable to assign a legal channel assignment for all routes, for those routes that 
we cannot find a valid channel assignment, ROCR rips-up the illegal routes, adjusts the 
routing costs of all nodes along the illegal route (as described before), and reroutes the 
illegal routes. ROCR finishes routing a circuit when a valid routing path and channel 
assignment has been determined for all nets. 

Finally, the binary updater handles updating the software binary to utilize the 
hardware for the loops. We replace the original software instructions for the loop with a 
jump to hardware initialization code. The initialization code first enables the hardware by 
writing to a memory mapped register or port that is connected to the hardware enable 
signal. Following the enable instruction, we generate the code responsible for shutting 
down the microprocessor into a power-down sleep mode. When the hardware finishes 
execution, the hardware asserts a completion signal that causes a software interrupt. This 
interrupt wakes up the microprocessor, which resumes normal execution. Finally, we add 
a jump instruction at the end of the hardware initialization code that jumps to the end of 
the original software loop. 

 
6. EXPERIMENTAL RESULTS 

Considering a warp processor system with a dedicated on-chip CAD module, we must be 
able to execute the on-chip tools on a small, embedded microprocessor, such as an 



ARM7, using limited instruction and data memory resources while providing fast 
execution times. Furthermore, in a system in which the CAD tools execute as a task on 
the one of the main processors, the algorithms must still use limited memory resources 
and execute quickly as to not impact the execution of the main application. The 
ROCCAD tools require 34,720 lines of C code corresponding to a binary size of 327 
kilobytes. Additionally, the ROCCAD algorithms execute for an average of only 1.2 
seconds on a 40 MHz ARM7 processor requiring a maximum of 3.6 megabytes of data 
memory during execution, for the benchmarks described below.  

We compare our warp processors with a traditional hardware/software partitioning 
approach targeting an FPGA, comparing speedup and energy reduction of critical regions 
for 15 embedded systems benchmarks from NetBench [Memik et al. 2001], MediaBench 
[Lee et al. 1997], EEMBC [EEMBC 2005], Powerstone [Malik et al. 2000], as well as 
our on-chip logic minimization tool ROCM [Lysecky and Vahid 2003]. Instead of 
restricting our analysis to a specific processor and FPGA, we compare the performance 
and energy savings of both approaches in a device independent manner by analyzing the 
software and hardware implementations with respect to the ratio of execution frequency 
and power consumption of the processor to that of the configurable logic. Thus, in 
utilizing ratios to characterize the processor and FPGA’s operating frequency and power 
consumption, we can analyze the benefits of warp processing independently of the 
specific technology process we are utilizing, as the ratios between processor and FPGA 
operating frequency are likely to remain same with successive technology generations.  

In determining the processor to FPGA operating frequency and power consumption 
ratios, we analyzed the published performance and power consumption data for several 
commercially available single-chip microprocessor/FPGA devices. Table I provides a 
summary of the maximum operating frequencies of several single-chip 
microprocessor/FPGA devices. The Xilinx Virtex-4 FX is the fastest of the devices 
integrating two or more 450 MHz PowerPC processors within a configurable logic fabric 
operating at a maximum frequency of 500 MHz [Xilinx 2005b]. Xilinx also offers the 
second fastest device, the Xilinx Virtex-II Pro, integrating two or more 400 MHz 
PowerPC processors within a configurable logic fabric operating at a maximum 
frequency of 320 MHz [Xilinx 2004b]. Altera’s Excalibur combines a 200 MHz ARM9 
processor with an FPGA operating at a maximum frequency of 180 MHz [Altera 2005]. 
Atmel’s Field Programmable System Level Integrated Circuit (FPSLIC) combines a 40 
MHz AVR processor with an FPGA capable of executing at 33 MHz [Atmel 2005]. 
Finally, Triscend offered the A7 that combines a processor and FPGA both executing at a 
maximum frequency of 60 MHz [Triscend 2003]. Table I further provides the ratio of 
processor frequency to FPGA frequency for these platforms. In the best case, the Virtex-4 
FX device achieves a ratio of 1:1.1, whereas the Xilinx Virtex-II Pro and Atmel FPSLIC 
both have a ratio of 1:0.8. On average, these single-chip devices have a processor to 
FPGA frequency ratio of 1:0.92. Furthermore, as processors continue to increase in speed 

Table I. Processor and FPGA operating frequencies of commercially available single-
chip microprocessor/FPGA devices. 

 

Device Proc. Freq. 
(MHz)

FPGA Freq. 
(MHz)

Proc.:FPGA 
Freq.

Xilinx Virtex-4 FX (0.09µm) 450 500 1:1.1 
Xilinx Virtex-II Pro (0.13µm) 400 320 1:0.8 
Altera Excalibur (0.18µm) 200 180  1:0.9 
Atmel FPSLIC (0.18µm) 40 33 1:0.8 
Triscend A7 (0.18µm) 60 60 1:1.0 
Average: 1:0.92 



with each subsequent process technology node, the operating frequencies of FPGAs will 
also increase and the ratio of processor frequency to FPGA frequency will remain 
relatively constant, as is exhibited by the successive offering from Xilinx [Xilinx 2000b]. 

Table II presents the operating frequency and power consumption ratios between a 
low power ARM7 processor and a traditional FPGA and between a low power ARM7 
processor and our W-FPGA. The processor to FPGA operating frequency ratio is based 
on the average presented in Table I. We calculated the processor to FPGA power 
consumption ratio by evaluating the power consumption of the critical kernels for several 
embedded benchmark applications implemented as software executing an on a low power 
processor and hardware executing on an FPGA. For each of the 15 NetBench, 
MediaBench, EEMBC, and Powerstone benchmarks considered, we implemented the 
applications’ critical regions as hardware by manually designing a VHDL 
implementation and synthesizing the design for a Xilinx Virtex-E FPGA using Xilinx ISE 
4.1 [Xilinx 2006]. Using the Xilinx Virtex Power Estimator along with information 
provided by Xilinx ISE, we determined the power consumed by the FPGA for each 
critical region. We then calculated the processor to FPGA power consumption ratio by 
comparing the average power consumed by the Virtex-E FPGA to the power 
consumption of a low power ARM7 processor, both of which are implemented using a 
0.18 µm technology. On average, the FPGA consumes three times as much power as the 
ARM7 processor for the critical regions of the applications we consider, corresponding to 
a ratio of 1:3.0. Furthermore, as the spreadsheet based Xilinx Virtex Power Estimator is 
not as accurate as the XPower tool, we conducted a similar analysis using several of the 
embedded benchmark applications with almost identical results. 

The simplicity of the W-FPGA’s configurable logic fabric allows us to achieve higher 
execution frequencies and lower power consumption compared to a traditional FPGA 
(implemented using the same process technology) for the embedded applications 
considered. We analyzed both execution frequency and power consumption of our W-
FPGA compared to an existing FPGA. To determine the performance and power 
consumption of our W-FPGA, we implemented our configurable logic architecture in 
VHDL and synthesized the design using Synopsys Design Compiler targeting the UMC 
0.18 µm technology library. Using the synthesized fabric along with gate-level 
simulations, we determined the delay and power consumption of individual components 
within our configurable logic architecture. We note that this ASIC implementation of our 
configurable logic is less efficient than a full custom layout would be in terms of 
performance, power, and area, and as such, our estimates for performance and power 
consumption of the W-FPGA are slightly pessimistic. We implemented the critical 
regions for all benchmark applications using our on-chip CAD tools and determined the 
maximum execution frequency by determining the critical path within each placed and 
routed design and further calculated the power consumption for each circuit. In addition 
to considering the delay and power consumption of the configurable logic and switch 
matrices, we also considered the delay and power consumption associated with the short 
and long wire segments used for routing the hardware design. Finally, we compared the 
execution frequency of our W-FPGA with the Xilinx Virtex-E FPGA, as the Virtex-E 
FPGA uses a 0.18 µm process. On average, our W-FPGA can achieve clock frequencies 

Table II. Operating frequency and power consumption ratios between a low power 
ARM7 processor and a traditional FPGA and the W-FPGA. 

 

Device Proc.:FPGA Freq. Proc.:FPGA Power

 FPGA 1:0.92 1:3.0 
 W-FPGA 1:1.0 1:2.25 



1.5x faster than the Xilinx FPGA and consumes 25% less power. Therefore, our warp 
processors should exhibit a ratio of processor frequency to W-FPGA frequency of 1:1 
and a power consumption ratio of 1:2.25. 

Fig. 7 and Fig. 8 highlight the critical region speedup and critical region energy 
reduction for the single most critical kernel using warp processors and traditional 
hardware/software partitioning targeting an FPGA for all 15 benchmarks using the 
operating and power consumption ratios summarized in Table II. In calculating speedups 
of the two approaches, we determined all software execution cycles using the 
SimpleScalar simulator [Burger and Austin 1997] and hardware execution cycles using 
gate-level simulations of the partitioned critical regions and our W-FPGA. For the 
traditional hardware/software partitioning, we manually designed the hardware 
implementations of the critical regions in VHDL to determine the number of cycles 
required for the hardware execution, considering the same critical regions partitioned by 
warp processing for the traditional hardware/software partitioning. 

We calculated the energy required for the critical regions after partitioning using the 
equations in Fig. 9. The total energy consumption, Etotal, is the sum of the energy 
consumed by the processor, EProc, and the energy consumed by the hardware 

Fig. 7. Critical region speedup of single critical region implemented using warp processors and traditional 
hardware/software partitioning targeting an FPGA for NetBench, MediaBench, EEMBC, and Powerstone 

benchmark applications.  

Fig. 8. Critical region energy reduction of single critical region implemented using warp processors and 
traditional hardware/software partitioning targeting an FPGA for NetBench, MediaBench, EEMBC, and 

Powerstone benchmark applications.  

Fig. 9. Equations for determining energy consumption after hardware/software partitioning. 
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configuration, EHW. The energy consumed by the processor consists of the energy 
consumed by the processor during initialization of the hardware configuration, computed 
as the processor’s active power consumption, PProc(active), multiplied by the initialization 
time, tinit, and the energy consumed by the processor while the critical region is executing 
in hardware, computed as the processor’s idle power consumption, PProc(idle), multiplied 
by the active time for the hardware configuration, tactive. The processor power 
consumption is based on the power consumption of the ARM7 executing at its maximum 
operating frequency, 100MHz. The energy consumed by the hardware configuration 
consists of the energy consumed during execution of the hardware, computed as the 
power consumption of the hardware configuration, PHW, multiplied by the active time for 
the hardware configuration, tactive. Additionally, the energy consumed by the hardware 
configuration also includes the static energy consumed by the configurable logic during 
the entire execution time of the application, which is computed as the static power 
consumed by the configuration logic, Pstatic, multiplied by the total execution time, ttotal.  

On average, our warp processor achieves a critical region speedup of 22X with an 
average energy reduction of 80%. In comparison, the traditional hardware/software 
partitioning approach targeting an FPGA achieves a critical region speedup of 20X and 
an energy reduction of 79%. Additionally, warp processors achieve a critical region 
speedup of over 100X for the benchmark g3fax. For eight of the applications, including 
brev, g3fax, url, bitmnp, ttsprk, g721, mpeg2, and matmul, the warp processor provides 
an energy reduction of over 80% for the applications’ single most critical regions. The 
increased performance of the warp processor compared to the traditional 
hardware/software partitioning can be partially attributed to inclusion of customized 

Fig. 10. Overall application speedups of NetBench, MediaBench, EEMBC, and Powerstone benchmark 
applications implemented using warp processors (supporting up to four critical regions) and traditional 

hardware/software partitioning targeting an FPGA.

Fig. 11: Overall energy reduction of NetBench, MediaBench, EEMBC, and Powerstone benchmark 
applications implemented using warp processors (supporting up to four critical regions) and traditional 

hardware/software partitioning targeting an FPGA.
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hardware resources within the W-FPGA design and to the simplicity of the W-FPGA’s 
configurable logic fabric. 

Fig. 10 and Fig. 11 present the overall application speedup and energy reduction 
using warp processors (supporting up to four critical regions) and traditional 
hardware/software partitioning targeting an FPGA for all 15 benchmarks using the 
operating and power consumption ratios summarized in Table II. On average, warp 
processors provide an overall application speedup of 6.3X while reducing energy 
consumption by 66%. Alternatively, the traditional hardware/software partitioning 
targeting an FPGA results in an average overall application speedup of 6X and an energy 
reduction of 56%. For two applications, brev and matmul, warp processors achieve a 
speedup greater than 10X while reducing energy consumption by more than 80%. 

We analyzed the energy consumption of warp processors compared to several 
different processor alternatives, ranging from processors designed for low power to 
voltage scalable processors to high performance processors. Fig. 12 presents the average 
critical region energy consumption of all 15 benchmark applications for 10 different 
processor configurations, normalized to the energy consumption of the XScale processor 
executing at the maximum possible frequency of 502 MHz. While executing the 
benchmarks’ critical kernels on an Intel Pentium 4 processor may provide extremely fast 
execution, the power demands of the Pentium processor lead to extremely high energy 
consumption, requiring roughly 15X to 24X more energy than the XScale processor. 
While high performance processors are typically not designed for low power 
consumption, voltage scalable processors are designed for flexibility in performance and 
power consumption by allowing a designer to adjust both the operating voltage and 
frequency. By reducing the operating voltage and frequency of the XScale processor, we 
can execute the XScale processor at 102 MHz while reducing energy consumption by 
22%. Alternatively, many processors are designed to provide low power consumption, 
such as the ARM family of processors, and can often be found in embedded systems 
where battery lifetime is a primary concern. Although the 100 MHz ARM7 is the slowest 
processor, the ARM7 provides the lowest energy consumption of the traditional 
processors we evaluated. However, a warp processor incorporating a 100 MHz ARM7 
processor and our W-FPGA achieves the lowest overall energy consumption, requiring 
less than 5% of the energy consumed by the XScale processor and approximately one 
fifth of one percent of the energy consumed by the Pentium 4 processor. 

Finally, we evaluated the area required to implement our W-FPGA. As described 
earlier, we synthesized the VHDL implementation of our W-FPGA using Synopsys 
Design Compiler targeting the UMC 0.18 µm technology library. Our configurable logic 

Fig. 12: Average overall energy consumption of NetBench, MediaBench, EEMBC, and Powerstone benchmark 
applications using various processors normalized to XScale processor at 502 MHz (processor frequency 

reported in megahertz). 
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architecture, including the address generators, multiply-accumulator, and supporting 
logic, has an area of 14.2 mm2, roughly corresponding to 852,000 gates. Compared to a 
low power processor utilized for the main processor with our warp processor design, the 
W-FPGA requires 3X more area than an ARM7 processor with an 8 kilobyte cache. 
However, our configurable logic architecture only requires 1.2X more area than an 
ARM9 with 32 kilobytes of cache, a reasonable choice for the main processor. Thus, 
when combined with the main processor, a warp processor achieves an average speedup 
of 6.3X using between 2.2X and 4X more area than a small low power processor alone. 
As an alternative comparison, our W-FPGA is approximately equivalent in area to a 64 
kilobyte cache.   

Additionally, for each benchmark application we determined the amount of resources 
required to implement the application’s critical kernels within the W-FPGA’s routing-
oriented configurable logic fabric. Fig. 13 presents the percentage of configurable logic 
blocks and routing resources within our RCLF required to implement the critical regions 
of the NetBench, MediaBench, EEMBC, and Powerstone benchmark applications. On 
average, the applications’ critical kernels required 12% of the available CLBs and 39% of 
the routing resources. pktflow required the largest amount of resources, utilizing 33% of 
the CLBs and 73% or the routing resources to implement the application’s critical 
kernels. On the other extreme, brev requires the fewest resources within the RCLF, only 
utilizing 5% of the routing resources.  

 
7. CONCLUSIONS AND FUTURE WORK 

Our work demonstrates that the basic concept of warp processing, namely the concept of 
dynamically mapping software kernels to on-chip FPGA for performance and energy 
improvements, is possible. Although the work described in this paper is extensive, 
involving several years of development and showing reasonable speedups of 6.3X and 
energy savings of 66% (and up to 10X and 80% on some examples) considering several 
standard benchmarks, extensive future work is still required. Better speedups and energy 
savings may be obtained through improved but still lean partitioning, synthesis, 
placement, and routing, through advanced decompilation methods that can detect higher-
level constructs, and through the use of embedded multipliers, block RAMs, and other 
components. Another hurdle to be overcome is the memory bottleneck, which limits 
speedups in many benchmarks. Advanced memory access methods may reduce this 
bottleneck, and we are investigating this direction [Stitt et al. 2005]. Improving the warp-
oriented FPGA represents another direction for further improvements; we are presently 
fabricating a prototype of the W-FPGA through collaboration with Intel as an effort in 
that direction. Furthermore, study of desktop-based applications is needed to determine 
the extent to which warp processing can improve such applications, which may involve 

Fig. 13: Percentage of RCLF configurable logic blocks (CLBs) and routing resources used to implement 
critical regions of NetBench, MediaBench, EEMBC, and Powerstone benchmark applications.  
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pointers, extensive access to data structures in memory, and execution spread over more 
regions than is typical in embedded applications. For both embedded and desktop 
applications, we also need to address the impact and interplay of an operating system 
executing within our warp processor architecture. As the operating system is an essential 
component in scheduling the software execution and managing hardware resources, the 
operating system needs to be aware of warp processing and potentially control the warp 
processor’s dynamic partitioning. Additionally, studies must be done to compare warp 
processing’s use of silicon area to other uses that could also speedup up software 
binaries. Yet, the impressive demonstrated 100X-1000X speedups of existing 
hardware/software partitioning methods mean that the potential benefits of warp 
processing are quite significant.  
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