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Abstract. This paper presents two heuristics for automatic hardware/software partitioning of system level spec-
ifications. Partitioning is performed at the granularity of blocks, loops, subprograms, and processes with the
objective of performance optimization with a limited hardware and software cost. We define the metric values
for partitioning and develop a cost function that guides partitioning towards the desired objective. We consider
minimization of communication cost and improvement of the overall parallelism as essential criteria during par-
titioning. Two heuristics for hardware/software partitioning, formulated as a graph partitioning problem, are
presented: one based on simulated annealing and the other on tabu search. Results of extensive experiments,
including real-life examples, show the clear superiority of the tabu search based algorithm.
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1. Introduction

New tools which extend design automation to system level have to support the integrated
design of both the hardware and software components of an embedded system [39], [18].
The input specification accepted by such design tools describes the functionality of the
system together with some design constraints and is typically given as a set of interacting
processes. Many embedded systems have strong requirements concerning the expected
performance. Satisfaction of these performance constraints can frequently be achieved
only by hardware implementation of some components of the specified system. This can be
realized by using dedicated ASICs (application specific integrated circuits) or FPGAs (field-
programmable gate arrays) as part of the implementation architecture. Another solution in
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order to meet design requirements is to develop an ASIP (application specific instruction-
set processor) with a carefully selected instruction-set and architecture, which produces the
required performance for the given application [20].

The term “hardware/software co-design” is used today to denote the cooperative devel-
opment process of both the hardware and the software components of a system. According
to traditional methodologies the hardware and software parts of an application are sepa-
rately developed and their final integration is based on ad hoc methods, which increases
time-to-market and cost, and very often decreases quality and reliability of the product.

Research in hardware/software co-design aims to develop methodologies and tools for
a systematic and concurrent development of the hardware and software components, pro-
viding interaction and exploration of trade-offs along the whole design process. Thus, the
actual area of co-design covers several aspects of the design process: system specification
and modeling, co-simulation of heterogeneous systems, partitioning, system verification,
compilation, hardware and software synthesis, interface generation, performance and cost
estimation, and optimization. The reader can find overviews concerning the main trends of
this very dynamic area in [7], [9], [11], [12], [18], [31], [39].

This paper concentrates on the selection of the appropriate part of the system for hardware
and software implementation respectively, known as the hardware/software partitioning
problem. Hardware/software partitioning is one of the main challenges during the design of
embedded applications, as it has a crucial impact both on the cost and the overall performance
of the resulted product.

For small systems with a very well understood structure and functionality, the number
of realistic alternatives of hardware/software partitioning is small. Thus, assignment of
functionality to the hardware and software domains can be performed using an ad hoc
approach based on the designer’s experience and intuition [6]. The main problems to
be solved are in this case hardware and software synthesis, co-simulation, and interface
generation.

If the specified system is large, with a complex functionality resulting from a high num-
ber of interacting components, the number of partitioning alternatives is extremely large
and their impact on cost and performance cannot be estimated without support of a design
tool [18]. Different partitioning schemes can be investigated with support of high perfor-
mance heuristics based on adequate cost functions and estimations. Such a computer aided
partitioning technique is a crucial component of any co-design environment [8].

Several approaches have been presented for the partitioning of hardware/software systems.
They differ in the initial specification, the level of granularity at which partitioning is
performed, the degree of automation of the partitioning process, the cost function, and
the partitioning algorithm. In [23], [17], [3], [34], [38], [1], [33] automatic partitioning
is performed, while the approaches presented in [2], [14], [27], [10] are based on manual
partitioning. Partitioning at a fine grained level is performed in [23], [17], [3]. In [2], [28],
[38], [1], [41] partitioning is performed at a coarser granularity.

Iterative improvement algorithms based on neighborhood search are widely used for hard-
ware/software partitioning. In order to avoid being trapped in a local minimum heuristics
are implemented which are very often based on simulated annealing [17], [35], [1]. This
is mainly due to the fact that simulated annealing algorithms can be quickly implemented
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and are widely applicable to many different problems. At the same time a limitation of this
method is the relatively long execution time and the large amount of experiments needed
to tune the algorithm.

In [38] a hardware/software partitioning algorithm is proposed which combines a hill
climbing heuristic with binary search algorithm. It minimizes hardware cost while satisfying
certain performance constraints. This differs from our approach which tries to maximize
performance under given hardware and software cost constraint. The partitioning strategy
presented in [28] combines a greedy algorithm with an outer loop algorithm which takes
into account global measures. Similar to [34] and [41] this approach is based on exact
knowledge of execution times for each task implemented in hardware or software and of
all communication times. These assumptions impose hard restrictions on the features of
the system specifications accepted as input. In our approach we do not necessarily impose
such limitations, which broadens the range of applications. Integer Linear Programming
formulations of the hardware/software partitioning problem are proposed in [5], [33].

The approach described in [1] is similar to ours in the sense that performance has to be
maximized (in terms of execution time) choosing the appropriate implementation technol-
ogy for a set of tasks, under certain cost assumptions. Estimations used during optimization,
which is based on simulated annealing, are valid only under the assumption of a single,
statically scheduled process as the software component.

Our design environment accepts as input a system level, implementation independent
specification of an application. The synthesized system has to produce maximal perfor-
mance (in terms of execution speed) using a given amount of hardware and software re-
sources. Automatic partitioning at a coarse grain level (process, subprogram, loop, block)
is our approach to achieve this goal during system level design. As performance and cost es-
timations at this level are inherently approximate, our design process allows re-partitioning
in later steps which is performed by moving functionality from one domain to the other, if
needed [37].

Our partitioning strategy is based on metric values derived from profiling (simulation),
static analysis of the specification, and cost estimations. We consider that minimization of
communication cost between the software and the hardware partition and improvement of
the overall parallelism are of outstanding importance during partitioning at system level.
Relatively low performances reported in [34] and [14] are, for example, caused by high
communication costs between the hardware and software domains, which have not been
minimized.

We have implemented first a simulated annealing based algorithm for hardware/software
partitioning. We show that important reduction of execution time can be achieved by
considering even small application specific improvements at algorithm design. We then
implemented our partitioning algorithm using the tabu search method. Based on extensive
experiments we show that tabu search results in much better execution speed and clearly
outperforms simulated annealing.

The paper is divided into 5 sections. Section 2 introduces the structure of the hard-
ware/software co-synthesis environment and discusses some assumptions concerning the
input specification and the target architecture. Partitioning steps, the metric values, and the
proposed cost function are presented in section 3. In section 4 we discuss our simulated
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Figure 1. Overview of the co-synthesis environment.

annealing and tabu search based partitioning heuristics, evaluate their performance and
compare them based on results of extensive experiments. Finally, section 5 presents the
conclusions.

2. The Co-Synthesis Environment

An overview of the structure of our hardware/software co-synthesis environment is depicted
in Figure 1. The input specification describes system functionality without prescribing
the hardware/software boundary or implementation details. A basic assumption is that
this specification is formulated as a set of processes interacting via messages transmitted
through communication channels. We also assume that this specification is executable and
that profiling information can be generated.

The current implementation accepts input designs specified in an extended VHDL which
includes a synchronous message passing mechanism for process communication. The
interprocess synchronization and communication mechanism provided by standard VHDL
[25] is at a low level and its semantics is defined in terms of simulation. This makes
reasoning about processes and their interaction as well as synthesis extremely difficult and
inefficient. In [15] we present a model for system-level specification of interacting VHDL
processes and describe the synthesis strategy we have developed for it. According to the
model, processes are the basic modules of the design, and they interact using a synchronous
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message passing mechanism with predefined send/receive commands. Communication
channels are represented by VHDL signals. Using this model, communication interfaces
between processes can be easily established or modified during automatic partitioning,
when new processes are created or functionality is moved from one process to another.
Designs formulated according to this model are translated by a simple preprocessor into
standard VHDL models for simulation purpose [15].

In the context of our co-synthesis environment, a VHDL description corresponding to
our system-level specification model can be simulated, partitioned, and synthesized into
hardware and software components.

When the final partitioning is done, the hardware implementation is synthesized by the
CAMAD high-level synthesis (HLS) system [36]. The hardware implementation is consid-
ered as a specialized coprocessor which interacts with the software generated by a compiler
[21]. We have made the following assumptions concerning the target architecture:

1. There is a single programmable component (microprocessor) executing the software
processes (with a run-time system performing dynamic scheduling);

2. The microprocessor and the hardware coprocessor are working in parallel (the archi-
tecture does not enforce a mutual exclusion between the software and hardware);

3. Reducing the amount of communication between the microprocessor (software parti-
tion) and the hardware coprocessor (hardware partition) improves the overall perfor-
mance of the application.

This paper concentrates on the front-end of the co-synthesis environment, which performs
extraction of performance critical regions and hardware/software partitioning.

3. Partitioning Steps and the Cost Function

Partitioning starts from an initial system specification described as a set of processes in-
teracting through communication channels. This specification is further decomposed into
units of smaller granularity. The partitioning algorithm generates as output a model consist-
ing of two sets of interacting processes: the processes in one set are marked as candidates
for hardware implementation, while the processes in the other set are marked as software
implementation candidates. The main goal of partitioning is to maximize performance in
terms of execution speed. In order to achieve this we distribute functionality between the
software and the hardware partitions taking into account communication cost and overall
parallelism of the synthesized system. Thus, the following three objectives have to be
considered:

1. To identify basic regions(processes, subprograms, loops, and blocks of statements)
which are responsible for most of the execution time in order to be assigned to the
hardware partition;

2. To minimize communication between the hardware and software domains;

3. To increase parallelism within the resulted system at the following three levels:
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– internal parallelism of each hardware process (during high-level synthesis, opera-
tions are scheduled to be executed in parallel by the available functional units);

– parallelism between processes assigned to the hardware partition;

– parallelism between the hardware coprocessor and the microprocessor executing
the software processes.

The partitioning algorithm takes into account simulation statistics, information from static
analysis of the source specification, and cost estimations. At the same time, all major
decisions taken by the design tool can be influenced through user interaction. Statistics
data are collected from simulation of an internal representation generated by a front-end
compiler, loading the system with sets of typical input stimuli. Two types of statistics are
used by the partitioning algorithm:

1. Computation load (CL)of a basic region is a quantitative measure of the total com-
putation executed by that region, considering all its activations during the simulation
process. It is expressed as the total number of operations (at the level of internal
representation) executed inside that region, where each operation is weighted with a
coefficient depending on its relative complexity:

C Li =
∑

opj∈B Ri

N actj × φopj ; N actj is the number of activations of

operationopj belonging to the basic regionB Ri ;φopj is the weight

associated to that operation.

The relative computation load (RCL)of a block of statements, loop, or a subprogram
is the computation load of the respective basic region divided by the computation load
of the process the region belongs to. The relative computation load of a process is the
computation load of that process divided by the total computation load of the system.

2. Communication intensity (CI)on a channel connecting two processes is expressed as
the total number of send operations executed on the respective channel.

3.1. The Partitioning Steps

Hardware/software partitioning is performed in four steps, which are shown in Figure 2:

1. Extraction of blocks of statements, loops, and subprograms: During the first partitioning
step processes are examined individually to identify performance critical regions that
are responsible for most of the execution time spent inside a process (regions with
a large CL). Candidate regions are typically loops and subprograms, but can also be
blocks of statements with a high CL. The designer guides identification and extraction
of the regions and decides implicitly on the granularity of further partitioning steps in
two ways:

a. By identifying a certain region to be extracted (regardless of its CL) and assigning
it to the hardware or software partition (see also section 3.3.). This, for instance,
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Figure 2. The partitioning steps.

can be the case for some statement sequence on which a hard time constraint has
been imposed which can be satisfied only by hardware implementation.

b. By imposing two boundary values:

– a thresholdX on the RCL of processes that are examined for basic region
extraction;

– a thresholdY on the RCL of a block, loop, or subprogram to be considered
for basic region extraction.

The search for candidate regions in processes with RCL greater thanX is performed
bottom-up, starting from the inner blocks, loops, and the subprograms that are not
containing other basic regions. When a region has been identified for extraction, a
new process is built to have the functionality of the original block, loop, or subpro-
gram and communication channels are established to theparentprocess. In [16] we
show how extraction of critical regions and process generation is solved in our current
implementation.

2. Process graph generation: During the second step an internal structure, called the
process graph, is generated. This step will be discussed in section 3.2.
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3. Partitioning of the process graph: We formulate hardware/software partitioning as a
graph partitioning problem performed on the process graph. In section 4 we present
two algorithms which have been implemented for graph partitioning and compare their
performance.

4. Process merging: During the first step one or severalchild processes are possibly
extracted from aparentprocess. If, as result of step 3, some of the child processes are
assigned to the same partition with their parent process, they are, optionally, merged
back together.

3.2. The Process Graph

The input to the second partitioning step is a set of interacting processes. Some of them
are originally specified by the designer, others are generated during extraction of basic
regions. Statistics concerning computation load of the generated processes and communi-
cation intensity on the newly created channels are automatically recomputed during the first
partitioning step. The data structure on which hardware/software partitioning is performed
is theprocess graph. Each node in this graph corresponds to a process and an edge connects
two nodes if and only if there exists at least one direct communication channel between the
corresponding processes.

The graph partitioning algorithm takes into account weights associated to each node and
edge. Node weights reflect the degree of suitability for hardware implementation of the
corresponding process. Edge weights measure communication and mutual synchronization
between processes. The weights capture simulation statistics (CL, RCL, and CI) and
information extracted from static analysis of the system specification or of the internal
representation resulted after its compilation. The following data extracted from static
analysis are captured:

Nr opi : total number of operations in the dataflow graph of processi ;

Nr kind opi : number of different operations in processi ;

L pathi : length of the critical path (in terms of data dependency) through processi .

The weight assigned to process nodei , has two components. The first one,W1N
i , is equal

to the CL of the respective process. The second one is calculated by the following formula:

W2N
i = MC L × K C L

i + MU × K U
i + M P × K P

i − M SO× K SO
i ;

where:

K C L
i is equal to the RCL of processi , and thus is a measure of the computation load;

K U
i =

Nr opi

Nr kind opi
; K U

i is a measure of the uniformity of operations in processi ;

K P
i =

Nr opi

L pathi
; K P

i is a measure of the potential parallelism inside processi ;
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K SO
i =

∑
opj∈SPi

wopj

nr opi
; K SO

i captures the suitability of operations of processi for soft-

ware implementation.SPi is the set of such operations (floating point computation, file
access, pointer operations, recursive subprogram call, etc.) in processi andwopj is a weight
associated to operationopj , measuring the degree to which the operation has to be im-
plemented in software; a large weight associated to such an operation dictates software
implementation for the given process, regardless of other criteria.

The relation between the above-named coefficientsK C L, K U , K P, K SO is regulated by
four different weight-multipliers:MC L, MU , M P, andM SO, controlled by the designer.

Both components of the weight assigned to an edge connecting nodesi and j depend
on the amount of communication between processesi and j . The first one is a measure
of the total data quantity transferred between the two processes. The second one does not
consider the number of bits transferred but only the degree of synchronization between the
processes, expressed in the total number of mutual interactions they are involved in:

W1E
i j =

∑
ck∈Chi j

wdck × C Ick; W2E
i j =

∑
ck∈Chi j

C Ick;

whereChi j is the set of channels used for communication between processesi and j ; wdck

is the width (number of transported bits) of channelck in bits; C Ick is the communication
intensity on channelck.

3.3. Cost Function and Constraints

After generation of the process graph hardware/software partitioning can be performed as
a graph partitioning task. The weights associated to the nodes and edges must be combined
into a cost function which guides partitioning towards the desired objective and has to be
easily updated after passing from a current solution to a new one.

Our hardware/software partitioning heuristics are guided by the following cost function
which is to be minimized:

C(Hw, Sw) = Q1×
∑

(i j )∈cut

W1E
i j + Q2×

∑
(i )∈Hw

∑
∃(i j ) W2E

i j

W1N
i

NH

− Q3×
(∑

(i )∈Hw W2N
i

NH
−
∑

(i )∈Sw W2N
i

NS

)
;

whereHw andSw are sets representing the hardware and the software partition respectively;
NH and NS are the cardinality of the two sets;cut is the set of edges connecting the two
partitions;(i j ) is the edge connecting nodesi and j ; and(i ) represents nodei .

Minimization of this function produces an implementation which corresponds to the
partitioning objectives stated at the beginning of section 3. The partitioning objectives are
captured by the three terms of the cost function:

– Thefirst termrepresents the total amount of communication between the hardware and
the software partition. Decreasing this component of the cost function reduces the total
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amount of communication between partitions, which is a primary design goal. As a
second effect it also improves parallelism between processes in the hardware partition
and those implemented in software. This is an implicit result of reduced interaction
between the two partitions.

– Thesecond termstimulates placement into hardware of processes which have a reduced
amount of interaction with the rest of the system relative to their computation load and,
thus, are active most of the time. This strategy improves parallelism between processes
inside the hardware partition where physical resources are allocated for real parallel
execution. For a given processi , (

∑
∃(i j ) W2E

i j )/W1N
i is the total amount of interaction

the process is involved in, relative to its computation load. The whole term represents
the average of this value over the nodes in the hardware partition.

– Thethird term in the cost function pushes processes with a high node weight into the
hardware partition and those with a low node weight into the software one, by increasing
the difference between the average weight of nodes in the two partitions. This is a basic
objective of partitioning as it places time critical regions into hardware and also exploits
the potential of hardware to implement internal parallelism of processes.

The criteria combined in the cost function are not orthogonal, and sometimes compete
with each other. Moving a high node weight process into hardware, for instance, can
produce an increase in the communication between partitions. This competition between
partitioning objectives is controlled by the designer through the cost multipliersQ1, Q2,
andQ3 which regulate the relative influence of the different metrics.

Minimization of the cost function has to be performed in the context of certain constraints.
Thus, our heuristics have to produce a partitioning with a minimum forC(Hw, Sw), so
that the total hardware and software cost is within some user specified limits:∑

(i )∈Hw

H costi ≤ MaxH ;
∑
(i )∈Sw

S costi ≤ MaxS .

A preassignment of processes which are definitively assigned to one of the partitions can
be performed optionally by the designer. Often this preassignment is formulated in terms
of the weights: nodes with a weight smaller than a given limit have to go into software and
those with a weight greater than a certain limit should be assigned to hardware:

W2N
i ≥ Lim1⇒ (i ) ∈ Hw; W2N

i ≤ Lim2⇒ (i ) ∈ Sw.

Cost estimation has to be performed before graph partitioning, for both the hardware and
software implementation alternatives of the processes. In the current implementation of
our environment, the CAMAD high level synthesis system [36] produces hardware cost
estimations in terms of design area. Software cost, in terms of memory size, is estimated
for each process through compilation by our VHDL to C compiler [21].

4. Partitioning Algorithms and Experimental Results

As a final step of the hardware/software partitioning process the weighted graph is to be
partitioned into two subgraphs. The partitions containing nodes assigned to hardware and
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Table 1.Characteristics of the random graphs.

number of nodes probability

20 0.1 0.15 0.2 0.25
40 0.05 0.1 0.15 0.2

100 0.015 0.02 0.05 0.1
400 0.008 0.015 0.025 0.04

software respectively, are generated so that design constraints are satisfied and the cost
function is minimal.

Hardware/software partitioning, formulated as a graph partitioning problem, is NP com-
plete. In order to efficiently explore the solution space, heuristics have to be developed
which hopefully converge towards an optimal or near-optimal solution. We have imple-
mented two such algorithms, one based on simulated annealing (SA) and the other on tabu
search (TS). Both perform neighborhood search and, to avoid being trapped by a local
optimum, they allow, at certain stages of the search, uphill moves performed in a controlled
manner.

In this section we discuss the two algorithms, evaluate their performance and compare
them based on results of extensive experiments.

4.1. Experimental Evaluation of the Partitioning Algorithms

For evaluation of the partitioning algorithms we used both random and geometric graphs
[40] generated for experimental purpose, and graphs resulted from compilation of two
real-life examples (see sections 4.4 and 4.5).

Random graphsare defined by two characteristics: the number of nodes and a constant
specifying the probability that any given pair of nodes is connected.

Geometric graphsare defined by their number of nodes and the expected average degree
of the nodes. Different from random graphs, geometric graphs are not uniformly connected
but present clusters in their structure.

Weights and costs are assigned to the graph components during generation. We generated
for our experiments 32 graphs altogether, 16 random and 16 geometric. Eight graphs (4
random, 4 geometric) have been generated for each dimension of 20, 40, 100, and 400 nodes.
The characteristics of the 16 random graphs are given in Table 1. We generated geometric
graphs with an average degree of 0.85, 2, 4, and 10, for each of the four dimensions.
Experiments have been carried out assuming the following main objectives:

– To tune the algorithms for each graph dimension and to determine values of the generic
parameters so that partitioning converges with a high probability towards an optimum
for all test graphs of the given dimensionand the run time is minimized.

– To compare efficiency of the two algorithms.

It still has to be clarified what we call anoptimumin this context. For the 20 node
graphs it was possible to run exhaustive search to get thereal optimum which we later
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Figure 3. Simulated annealing algorithm.

used as a reference value. For each of the other graphs we performed, in preparation to the
experiments, very long and extremely expensive runs (both in terms of time and computing
power) using both SA and TS. We used aggressively very long cooling schedules, for
SA, and a high number of restarting tours, for TS (see sections 4.2 and 4.3). These runs
have been performed starting with different initial configurations and finally thebest ever
solution produced for each graph (in terms of minimal value of the cost function) has been
considered as theoptimumfor the further experiments.

During experiments with SA an additional difficulty originates from the random nature of
this algorithm. The same implementation with unchanged parameters can produce different
results, for the same graph, in different runs. During our experiments we considered that
a certain configuration of parameters produces an optimum for a graph, with a sufficient
probability, if for 100 consecutive runs of the SA algorithm we got each time the optimal
partitioning.

All experiments presented in the paper were run on SPARCstation 10.

4.2. Partitioning with Simulated Annealing

Simulated annealing selects the neighboring solution randomly and always accepts an im-
proved solution. It also accepts worse solutions with a certain probability that depends on
the deterioration of the cost function and on a control parameter called temperature [30].
In Figure 3 we give a short description of the algorithm. Withx we denote one solution
consisting of the two setsHw andSw. xnow represents the current solution andN(xnow)

denotes the neighborhood ofxnow in the solution space.
For implementation of this algorithm the parametersTI (initial temperature),TL (tem-

perature length),α (cooling ratio), and the stopping criterium have to be determined. They
define the so called cooling schedule and have a decisive impact on the quality of the parti-
tioning and the CPU time consumed. As result of our experiments we determined for each
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Table 2.Cooling schedules.

TI TL α

number of nodes
SM IM SM IM SM IM

20 400 400 90 75 0.96 0.95
40 500 450 200 150 0.98 0.97

100 500 450 500 200 0.98 0.97
400 1400 1200 7500 2750 0.998 0.995

graph dimension values forTI, TL, andα which are presented in Table 2. Two values have
been determined for each parameter: one corresponds to the SA algorithm that usessimple
moves(SM) at generation of a new solution, the other to the algorithm based onimproved
moves(IM) which will be explained later. With cooling schedules defined by these values
the algorithms produced an optimal partitioning for each graph with the respective number
of nodes.

The definition of the stopping criterium assumes that the system is considered as frozen
if for three consecutive temperatures no new solution has been accepted.

A problem specific component of the SA algorithm is the generation of a new solutionx′

starting from the current onexnow. We implemented two strategies for solution generation:
thesimple moveand theimproved move.

For thesimple movea node is randomly selected for being moved to the other partition.
The configuration resulted after this move becomes the candidate solutionx′. Random node
selection is repeated if transfer of the selected node violates some design constraints.

The improved moveaccelerates convergence by moving together with the randomly se-
lected node also some of its direct neighbors (nodes which are in the same partition and are
directly connected to it). A direct neighbor is moved together with the selected node if this
movement improves the cost function and does not violate any constraint. This strategy
stimulates transfer of connected node groups instead of individual nodes. Experiments
revealed a negative side effect of this strategy: the repeated move of the same or similar
node groups from one partition to the other, which resulted in a reduction of the spectrum
of visited solutions. To produce an optimal exploration of the solution space we combined
movement of node groups with that of individual nodes: nodes are moved in groups with
a certain probabilityp. After analysis of experimental results the value forp was fixed at
0.75. In Figure 4 we present the algorithm for generation of a candidate solution according
to the improved move.

The improved move has been developed as result of a problem specific design of the
neighborhood structure. The influence of this solution on the cooling schedule is shown
in Table 2. The reduction ofTI, TL, andα produces a reduction of the cooling time
and consequently of partitioning time. Partitioning times and the speedup produced by the
improved strategy are presented in Table 3 and in Figure 5. The times shown are the average
CPU time needed for running the SA algorithm, with the parameters given in Table 2, for all
graphs of the given dimension. The speedup, which already is significant for small graphs,
is growing with the number of nodes and becomes more than 400% for 400 nodes graphs.



18 ELES, PENG, KUCHCINSKI, AND DOBOLI

Figure 4. Generation of a new solution with improved move.

Table 3.Partitioning time with SA.

CPU time (s)
number of nodes speedup

SM IM

20 0.28 0.23 22%
40 1.57 1.27 24%

100 7.88 2.33 238%
400 4036 769 425%

Figures 6, 7 (for 100 nodes) and 8, 9 (for 400 nodes) illustrate the strategy of solution
space exploration followed by the SA algorithm. A comparison of the curves in Figures 6
and 8 with those in Figures 7 and 9 respectively, demonstrates the much faster convergence
provided by the improved moves. In Figures 8 and 9, illustrating the design space explo-
ration for 400 nodes, it is easy to observe the difference between the average quality of the
visited solutions for the simple and improved moves. Evolving on a path which is much
closer to the best solution, exploration with improved moves reaches faster the optimal
partitioning.

4.3. Partitioning with Tabu Search

In contrast to simulated annealing, tabu search controls uphill moves not purely randomly
but in an intelligent way. The tabu search approach accepts uphill moves and stimulates
convergence toward a global optimum by creating and exploiting data structures to take
advantage of the search history at selection of the next move [19].

Two key elements of the TS algorithm are the data structures called short and long term
memory. Short term memory stores information relative to the most recent history of the
search. It is used in order to avoid cycling that could occur if a certain move returns to
a recently visited solution. Long term memory, on the other side, stores information on
the global evolution of the algorithm. These are typically frequency measures relative to
the occurrence of a certain event. They can be applied to performdiversificationwhich is
meant to improve exploration of the solution space by broadening the spectrum of visited
solutions.

In Figure 10 we give a brief description of our implementation of the TS algorithm. In
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Figure 5. Partitioning times with SA: simple moves (SM) and improved moves (IM).

Table 4.Parameters and CPU time with TS.

numbers of nodes τ Nr f b Nr r CPU time (s)

20 7 30 0 0.008
40 7 50 0 0.04

100 7 50 0 0.19
400 18 850 2 30.5

a first attempt an improving move is tried. If no such move exists (or it is tabu and not
aspirated) frequency based penalties are applied to the cost function and the best possible
non tabu move is performed; this move can be an uphill step. Finally, in a last attempt, the
move which is closest to leave the tabu state is executed.

We consider as a candidate solutionxk the configuration obtained fromxnow by moving
nodek from its current partition to the other one, if this movement does not violate any
constraints. In thetabu list we store the list of the reverse moves of the lastτ moves
performed, which are considered as being forbidden (tabu). The sizeτ of this list (thetabu
tenure) is an essential parameter of the algorithm. In Table 4 we present the optimal values
for τ as resulted from our experiments.

Under certain circumstances it can be useful to ignore the tabu character of a move (the
tabu isaspirated). The tabu status should be overridden when the selected move improves
the search and it does not produce any cycling in the exploration of the design space. We
ignore the tabu status of a move if the solution produced is better than the best obtained so
far.

For diversification purpose we store (in the long term memory structure) the number of
iterations each node has spent in the hardware partition. Three means of improving the
search strategy by diversification have been implemented:
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Figure 6. Variation of cost function during simulated annealing with simple moves for 100 nodes.

1. For the second attempt to generate a new configuration (Figure 10) moves are ordered
according to a penalized cost function which favors the transfer of nodes that have spent
a long time in their current partition:

1C′k = 1Ck +
∑

i |1Ci |
Nr of nodes

× pen(k)

where

pen(k) =


−CH × Nodein Hwk

Niter
if node k∈ Hw

−CS×
(

1− Nodein Hwk

Niter

)
if node k∈ Sw

Nodein Hwk is the number of iterations nodek spent in the hardware partition;Niter

is the total number of iterations;Nr of nodesis the total number of nodes; Coefficients
have been experimentally set toCH = 0.4 andCS = 0.15.

2. We consider a move as forbidden (tabu) if the frequency of occurrences of the node in
its current partition is smaller than a certain threshold; thus, a move of nodek can be
accepted if:

Nodein Hwk

Niter
> TH if node k∈ Hw(

1− Nodein Hwk

Niter

)
> Ts if node k∈ Sw
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Figure 7. Variation of cost function during simulated annealing with improved moves for 100 nodes.

Figure 8. Variation of cost function during simulated annealing with simple moves for 400 nodes.
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Figure 9. Variation of cost function during simulated annealing with improved moves for 400 nodes.

Figure 10.Tabu search algorithm.
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The thresholds have been experimentally set toTH = 0.2 andTS = 0.4.

3. If the system is frozen (more thanNr f b iterations have passed since the current best
solution was found) a new search can be started from an initial configuration which is
different from those encountered previously.

The total number of iterations performed for partitioning is influenced by parameters
Nr f b (number of iterations without improvement of the solution after which the system
is considered frozen) andNr r (number of restarts with a new initial configuration). The
minimal values needed for an optimal partitioning of all graphs of the respective dimension
and the resulted CPU times are presented in Table 4. The times have been computed as the
average of the partitioning time for all graphs of the given dimension. It is interesting to
mention that restarting tours were necessary only for the 400 nodes graphs.

Figures 11 and 12 illustrate the strategy of design space exploration for the TS algorithm
applied to a 400 nodes and 100 nodes graph respectively. Figure 12 shows a very fast
convergence for 100 nodes, without restarting tours. Partitioning of the 400 nodes graph
needed two restarting tours for diversification, which is shown in Figure 11. The two
additional detail pictures given in this figure focus successively on the area close to the
optimum, in order to illustrate how the algorithm guides the exploration of the solution
space towards an optimum by a succession of diversification moves, uphill and improving
steps.

4.4. Comparative Evaluation of the SA and TS Approaches

The experiments presented in the previous sections lead to the following main conclusions
concerning hardware/software partitioning based on SA and on TS respectively:

1. Near-optimal partitioning can be produced both by the SA and TS based algorithm.

2. SA is based on a random exploration of the neighborhood while TS is completely de-
terministic. The deterministic nature of TS makes experimental tuning of the algorithm
and setting of the parameters less laborious than for SA. At the same time adaptation of
the SA strategy for a particular problem is relatively easy and can be performed without
a deep study of domain specific aspects. Although, specific improvements can result,
as we have shown, in large gains of performance. On the contrary, development of a TS
algorithm is more complex and has to consider particular aspects of the given problem.

3. Performances obtained with TS are excellent and are definitely superior in comparison
to those given by SA (on average more than 20 times faster), as shown in Table 5
and in Figure 13. This conclusion is very important especially in the context that,
to our knowledge, no TS based hardware/software partitioning approach has yet been
reported, while SA continues to be one of the most popular approaches for automatic
partitioning.

Finally, we compared our SA and TS-based heuristics with a classical iterative-improve-
ment approach, the Kernighan-Lin (KL) algorithm [29]. Given the relatively limited ca-
pacity of the KL-based algorithm to escape from local minima and its sensitivity to the
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Figure 11.Variation of cost function during tabu search partitioning for 400 nodes.
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Figure 12.Variation of cost function during tabu search partitioning for 100 nodes.

Table 5.Partitioning times with SA and TS.

CPU time (s)
number of nodes tTS/tSA

SAa (tSA) TS(tTS)

20 0.23 0.008 0.034
40 1.27 0.04 0.031

100 2.33 0.19 0.081
400 769 30.5 0.039

a. SA algorithm with improved moves.

Figure 13.Partitioning times with SA, TS, and KL.
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initial configuration, we had to perform several runs for each graph, with randomly selected
starting configurations. The number of necessary restarting tours differs depending on the
graph dimension. It has been fixed so that all graphs of a given dimension are optimally
partitioned with a sufficiently high probability (for 100 consecutive runs we got each time
the optimal partitioning, in the sense introduced in section 4.1). As shown in Fig. 13, parti-
tioning times with KL are slightly better than those with SA for small and medium graphs.
For the 400 nodes graphs SA outperforms the KL-based algorithm. TS is on average 10
times faster than KL for 40 and 100 nodes graphs, and 30 times faster for graphs with 400
nodes.

4.5. Examples

The conclusions presented above are based on experiments with random and geometric
graphs, as discussed in section 4.1. In order to validate our system level partitioning
approach we performed two further experiments on real-life models: theEthernet network
coprocessorand theOAM block of an ATM switch. Both models were specified at system
level in VHDL. After simulation, basic regions were extracted and the annotated process
graph has been generated. Partitioning was performed using both the SA based and the TS
algorithm, with the cost function presented in section 3.3 and a constraint on the hardware
cost representing 30% of the cost of a pure hardware implementation.

TheEthernet network coprocessoris given in [32] as an example for system specification
in SpecCharts and has been used, in a HardwareC version, in [22] and [24]. We have
rewritten it in VHDL, as a model consisting of 10 cooperating processes (730 lines of
code). These processes are depicted as rectangles in Figure 14. The coprocessor transmits
and receives data frames over a network under CSMA/CD (Carrier Sense Multiple Access
with Collision Detection) protocol. Its purpose is to off-load the host CPU from managing
communication activities. The host CPU programs the coprocessor for specific operations
by means of eight instructions. Processesrcv-comm, buffer-comm, andexec-unitare dealing
with enqueuing and decoding/executing these instructions.

Transmission to the network is performed in cooperation by three processes. Process
DMA-xmit gets a memory address from the host CPU and accesses directly the memory
in order to read the data. This data is forwarded successively to a second process (xmit-
frame) which packages it in frames according to a prescribed standard. Frames are then
sent as a series of bytes to processxmit-bit which outputs them on the serial network
line. If a collision is detected normal transmission is suspended, a number of jam bytes are
generated and after waiting a certain time the frame will be retransmitted. After a successful
transmission, the unit waits for a period of time required between frames before attempting
another transmission.

In parallel to the above processes, other four processes deal with reception from the
network. Processrcvd-bit continuously reads bits from the serial line of the network and
sends a succession of bytes to the buffering processrcvd-buffer. Processrcvd-framereceives
the data fromrcvd-bufferand filters out those frames which have as destination the host
system. It first waits to recognize a start-of-frame pattern and then compares the following
two bytes with the address of the host. If the addresses are equal the rest of the bytes
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Figure 14.The Ethernet network coprocessor.

belonging to the frame are read and sent to processDMA-rcvdwhich writes them to a local
memory.

After the first partitioning step, extraction of performance critical blocks, loops, and
subprograms, we got a VHDL specification consisting of 20 processes, represented as ovals
in Figure 14. Process graph generation and graph partitioning produced a hardware partition
with 14 processes and a software partition with 6 processes. Processes implemented in
software are shaded in the figure. The most time critical part of those processes that are
handling transmission and reception of data on the ethernet line as well as processes which
are strongly connected to them have been assigned to hardware and the rest belong to the
software partition. This corresponds to the results reported in [22] and [24], which have
been obtained following a different approach.

Our second example implements theoperation and maintenance (OAM) functions cor-
responding to the F4 level of the ATM protocol layer[13]. This level handles OAM
functionality concerning fault management, performance monitoring, fault localization,
and activation/deactivation of functions.

ATM (asynchronous transfer mode) is based on a fixed-size virtual circuit-oriented packet
switching methodology. All ATM traffic is broken into a succession of cells. A cell
consists of five bytes of header information and a 48-byte information field. The header
field contains control information of the cell (identification, cell loss priority, routing and
switching information). Of particular interest in the header are the virtual path identifier
(VPI) and the virtual channel identifier (VCI). They are used to determine which cells
belong to a given connection.
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The OAM functions in the network are performed on five hierarchical levels associated
with the ATM and Physical layers (PhL) of the protocol reference model [26]. The two
highest levels, F4 and F5, are part of the ATM protocol layer. The F4 level handles the
OAM functionality concerning virtual paths (VP) [4]:

– Fault management: when the appearance of a fault is reported to the F4 block, special
OAM cells will be generated and sent on all affected connections; if the fault persists,
the management system (MS) should be notified.

– Performance monitoring: normal operation of the network is monitored by continuous
or periodic checking of cell transmission.

– Fault localization: when a fault occurs it might be necessary to localize it; for this
purpose special loop back OAM cells are used.

– Activation/Deactivation: a special protocol for activation and deactivation of OAM
functions that require active participation of several F4 blocks, e.g. performance mon-
itoring, has to be implemented.

To perform these functions, in addition to normaluser cells, specially marked ATM cells
are used. They are the OAM cells: activation/deactivation cells, performance management
cells, and fault management cells (FMC).

We specified functionality of the F4 block of an ATM switch as a VHDL model consisting
of 19 interacting processes (1321 lines of code). These processes are depicted as rectan-
gles in Figure 15. The model resulted after extraction of basic regions has 27 processes,
represented as ovals in Figure 15. The resulted process graph has been partitioned into 14
processes assigned to hardware and 13 to software. Processes implemented in software are
shaded in the figure. Processes performing the filtering of input cells and those handling
user cells (which constitute, by far, the majority of received cells) were assigned to hard-
ware. Processes handling exclusively OAM cells (which are arriving at a very low rate),
and those assigned to functions which are executed at a low rate and without a hard time
constraint (likeinspect-table, orclear-error-status, for example) were assigned to software.

Our experiments with the ethernet coprocessor and the OAM block confirmed perfectly the
conclusions drawn from experiments with geometric and random graphs. Using parameters
extracted from Tables 2 and 4 both the SA based algorithm and the algorithm using TS
produced, from the first attempt, an optimal1 partitioning. These initial parameters were
for both examples the following:

TL= 75,TI = 400, α = 0.95 for SA, and

τ = 7, Nr f b = 30, Nr r = 0 for TS.

Partitioning times, with these parameters, were (in seconds):

0.25 (ethernet coprocessor), 0.60 (OAM block) for SA, and

0.011 (ethernet coprocessor), 0.02 (OAM block) for TS.

This result is important since it confirms that the parameters resulted from our experiments
can be used successfully for partitioning different applications which eliminates or, at least,
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Figure 15.The OAM block of an ATM switch.

reduces drastically the laborious and time consuming task of tuning the heuristics. Because
the structure of the process graphs generated from the two VHDL models is simpler than
that of the artificial graphs, the parameters and corresponding partitioning time could be
subsequently reduced to the values given in Table 6. Partitioning times for the two examples
confirmed the clear superiority of the TS algorithm over that based on SA, with more than
an order of magnitude.

Considering the whole partitioning process with its four steps, as depicted in Figure 2,
graph partitioning is the most time consuming task. This is not surprising given the poly-
nomial complexity of the algorithms corresponding to the other three steps. The most
complex part of the extraction algorithm for basic regions is to perform the analysis needed
for generation of the interfaces to the new processes [16]. This is why finding fast heuristics
for graph partitioning was our main concern. For the ethernet coprocessor and the OAM
block the time needed for the other three steps together, is of the same magnitude as the
time for graph partitioning. As the number of processes to be partitioned becomes larger,
the dominance of graph partitioning time becomes more and more evident.
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Table 6.Partitioning of the VHDL models.

number of processes partitioning with SA partitioning with TS
model tTS/tSA

initial
model

after extr. of
basic regions

TI TL α tSA (s) τ Nr f b Nr r tTS (s)

Ethernet cop. 10 20 400 40 0.90 0.08 7 5 0 0.006 0.075
OAM block 19 27 400 50 0.90 0.10 7 5 0 0.007 0.07

5. Conclusion

We have presented an approach to automatic hardware/software partitioning of system level,
implementation independent specifications. Partitioning is performed at the granularity
level of blocks, loops, subprograms, and processes and produces an implementation with
maximal performance using a limited amount of hardware and software resources. We
considered that minimization of communication cost between the hardware and software
partition and improvement of the overall parallelism are of crucial importance for the
resulted performance.

Partitioning is based on metric values derived from simulation, static analysis of the
specification, and cost estimations. All these information are captured as weights on nodes
and edges of the process graph. A cost function that combines these weights and guides
partitioning towards the desired objective has been developed.

We formulated hardware/software partitioning as a graph partitioning problem and solved
it by implementing two iterative improvement heuristics based on simulated annealing
and tabu search respectively. The algorithms have been evaluated based on extensive
experiments using both random and geometric graphs as well as real-life examples. We
have demonstrated that both algorithms can produce high quality solutions. We have also
shown that performances obtained with TS, which until now has been ignored in the context
of system level partitioning, are definitely superior in comparison to those given by even
improved implementations of SA, or by classical algorithms like KL. This is important as,
for a high number of nodes, partitioning times with SA or KL can be prohibitively long,
which hinders an efficient exploration of different design alternatives.

The algorithms we presented can be used also for partitioning purposes other than system
level hardware/software partitioning. They can be, for instance, equally useful, and can be
easily extended, for partitioning at finer levels of granularity.

Notes

1. We use “optimal” in the sense introduced in section 4.1. For the ethernet coprocessor we verified optimality
of the solution by running exhaustive search.
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