
Parametrization of Algorithms and FPGA Accelerators To Predict

Performance

Craig P. Steffen

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

csteffen@ncsa.uiuc.edu

July 2, 2007

Abstract

This paper presents a scheme for separately charac-
terizing computational algorithms and characterizing
computing hardware, and then combining those anal-
yses to find the suitability of a piece of hardware for
a scientific algorithm. The analysis of the algorithm
concentrates on a continuous computational density
function, ρ, that characterizes the loss of efficiency
of computation as a function of local store size.

A hardware system has multiple layers of cache
and data communication, each with a measured band-
width, latency, and cache size. To predict a limit of
the performance of an algorithm on a piece of hard-
ware, each layer is combined with the algorithm’s com-
putational density function to compute the limit that
layer places on the calculation speed. The lowest cal-
culation speed is then the upper limit of the computa-
tion of the algorithm on that hardware platform.

1 Introduction

The flexibility of the fabric of an FPGA is a tremen-
dous asset when performing systematic, repetitive cal-
culations. The functional units on the surface of the
FPGA can be allocated and connected in the way
that makes most sense for the task at hand. How-
ever, the user of an FPGA accelerator pays the price
for this flexibility in reduced clock speed, increased
difficulty in programming, and loss of memory hier-
archy transparency. This paper is concerned with
this last point, the requirement of the programmer
to explicitly deal with application data transfer.

The details of memory used to be a worry for
anyone using a computer[1]. Programmers once di-
rectly controlled details of memory access, but mod-
ern multi-cache CPUs and compilers have pushed such
details outside the concern of day-to-day program-
ming. Data packing and memory use efficiency are
still important, but automatic transparent cache con-
trollers mean the scientific programmer only interacts

with the caching system in terms of how it slows down
their code. However, FPGA processors and other ac-
celerator technologies force programmers to explicitly
choreograph data movement in their programs. The
fast and efficient cache management logic that appli-
cation programmers take for granted becomes con-
spicuous for its absence when someone attempts to
program an algorithm on a reconfigurable accelera-
tor.

Programming FPGA accelerators requires that
all data movement be understood in the original pro-
gram and re-choreographed to match the data de-
livery channels in the target hardware. Designing
and programming the re-packaging and movement of
data can take time and is not a task that program-
mers are used to. During, or worse, at the end of
this process, the data movement topology may end
up significantly slowing down the calculation on that
system. Changing the data movement strategy can
help resolve this problem, at further increased cost in
development time.

The formalism presented in this paper is an at-
tempt to provide a simple, direct way for an domain
expert or application programmer to characterize the
input data use of an algorithm or a piece of code.
The data use information about the algorithm can
be compared to characteristics of different hardware
architectures to discover what limitations the mem-
ory systems of those accelerators will place on the
speed of the algorithm. The value of characterizing
the algorithm separately from the hardware is that
codes are only ported to architectures that support
their data movement topology.

The model of this formalism is that the code will
be run on an abstract architecture where the bulk
of the problem is stored in RAM and the problem
is shipped off to a processing unit which has local
store spaces successively smaller closer to the pro-
cessing units. This is a common model for FPGA
accelerator systems. However, this formalism is not
specifically tied to FPGAs and could be used for dif-

1

ferent hardware accelerator architectures like the Cell
Broadband Engine or General-Purpose Graphics Pro-
cessing Units (GPGPUs).

Each layer of memory hierarchy has the potential
to be the memory transfer bottleneck that slows the
algorithm down due to data starvation. This formal-
ism calculates a series of computational speed values,
σi, one for each layer of the memory hierarchy of a
hardware system. The lowest σ value will determine
the best that algorithm can do on that hardware ar-
chitecture. The σ values will be calculated by cross
referencing the characterization of the algorithm with
the characterizations of a hardware system.

This approach is specifically designed to address
the abstract data input needs of the algorithm, unlike
more traditional performance analyses[2, 3, 4] which
concentrate on the code running on a specific archi-
tecture. These assume that the size of the input data
stream will be vastly larger than either the output
data or input instruction streams, so the output and
instructions are ignored in the speed estimations and
do not appear in any of the measurements or equa-
tions. The speed estimations are entirely based on
data input requirements.

The formalism presented here is not designed to
predict performance as much as find limitations on
that performance imposed by a memory transfer sys-
tem. It is a code or algorithm pre-analysis to help de-
cide if porting software to an FPGA system is worth
the effort.

2 Sample Algorithms

These three algorithms are used below to to illus-
trate the analysis techniques. They are familiar to
any computational scientist and their memory usage
characteristics are easily understandable. They are
referred to here as algorithms A, B, and C instead of
their formal names.

The first“algorithm A”, is a simple dot product
of two long vectors, A and B:

float A[SIZE],B[SIZE],dot_prod=0.0;

int i;

for(i=0;i<SIZE;i++){

dot_prod += (A[i]*B[i]);

}

The second algorithm, “algorithm B”, is a simple
square matrix multiply. The code is a triply-nested
loop. It is used to illustrate less trivial data depen-
dencies.

float A[SIZE][SIZE],B[SIZE][SIZE];

float C[SIZE][SIZE],temp;

int i,j,k;

for(i=0;i<SIZE;i++){

for(j=0;j<SIZE;j++){

float temp=0.0;

for(k=0;k<SIZE;k++){

temp += A[i][k]*B[k][j];

}

C[i][j] = temp;

}

}

}

Algorithm C is an NxN interaction problem. This
type of problem is common in physical simulations.
The assumption is that every data point (particle,
atom, etc.) must interact once with every other par-
ticle in the simulation. Assuming that the interaction
between two particles must be computed only once
for the pair, and that the data points do not self-
interact, then the total number of point-point com-

putations to calculate for a set of n points is n2

2 − n.

particle_t particle_list[N_PARTICLES];

int i,j;

for(i=0;i<(N_PARTICLES-1);i++){

for(j=i+1;j<N_PARTICLES;j++){

interaction_function(particle_list[i],

particle_list[j]);

}

}

3 Characterizing algorithms

This formalism introduces a new technique to charac-
terize a computational algorithm, built around what I
will call a characteristic “computational density func-
tion”, ρ, of the algorithm. This formalism makes the
following assumptions. First, the total input data set
consists of m operands each of size s and a total size
of M = m ·s. The total number of computations that
must be performed is Z. Each computation requires
at least ν operands. The computations will be per-
formed on some arbitrary abstract processor that has
a local memory store (analogous to a cache in a real,
physical processor). We also assume that there are
not memory packing and alignment and access pat-
terns are ideal. While they are are all problems that
a programmer must address, they are not considered
here.

The definition of a “computation” here may or
may not correspond to the output of a single physical
computational unit. The final answer of this formal-
ism will be computations per second, and so size of
a “computation” depends on context. In NAMD[5],
for instance, it would probably make sense to define
a computation as the calculation of the force on one
atom from one other atom. The output computa-
tional speed prediction would be in terms of number

2

of atom-atom forces that could be calculated per sec-
ond. Even though one such force computation re-
quires several look-ups and elementary operations,
the code is built around atom-atom interaction and
so that is a logical division.

The computational density function, ρ(α), is the
number of computations per byte of data that can
be performed by our abstract processor if the local
store is of size α. The units of ρ are operations per
byte

(

ops
B

)

. The model is that the local store will
be filled once and all possible computations with just
that data performed. When those computations are
finished, the processor loads more data out of the to-
tal problem M into the local store to continue com-
puting. The density function is a continuous, mono-
tonically increasing function of the local store size
(see exceptions two paragraphs down). Generally,
the larger the local store, the more computations per
byte can be performed before more data is required.
Once the local store size α is larger than M , then the
entire problem can be computed by loading into the
local store once. (This computation density function
is being defined as a part of this performance model-
ing scheme. It is not related to any density function
referred to in stochastic modeling of physical systems.
The density here is number of computations per byte,
similar to the way the MILC[6] collaboration talks
about “bytes per flop”.)

The computational density function is formulated
by calculating the number of operations η possible
with α bytes of data and dividing by the size α:

ρ(α) =
η(α)

α
(1)

The designer of the program designs the η function
according to the way the code does calculations based
on input data. Finding this function typically re-
quires detailed knowledge of the algorithm. It is
often convenient to formulate η in terms of some
other independent variable first (such as the number
of rows/columns in a square matrix multiply) and
then re-parameterize in terms of memory storage α.
“Computations” defined in the functions η and ρ are
at the convenience of the algorithm designer, so what-
ever is appropriate for the problem should be used.
The units of the final speed predictions will be these
computations per second. In NAMD[5], for instance,
it might be useful to define one “operation” as the de-
termining of forces between two particles in the sim-
ulation. Any smaller definition of operation in that
case would not be useful to predicting performance
on a large problem.

The computational density function is monoton-
ically increasing unless there are dependencies be-
tween performing calculations on different sections
of the input stream. If one piece of the calculation
must be complete before loading the next set of data

(for instance if the first calculation determined which
data to load next) then the calculation cannot be
streamed and the computational density goes down.
Example: for an algorithm, a data block of size S
must be stored to do the first calculation. The first
such block is A, then second is B and so on. The local
store, µ, is large enough to hold A and one half of B.
If the calculation of B is independent of that of A,
then in one transfer A and half of B can be loaded,
thus η(µ) = 1.5calculations. However, if B cannot
be loaded until the calculation of A is finished, then
the computational density function will get smaller
as a function of α because the value of η stays the
same:

η(1.5 · M) = η(M)

1.5 · M
<

η(M)

M
: ρ(1.5 · M) < ρ(M)

The computational density function described here
is not unlike the notion of temporal locality discussed[7,
8] by SDSC and Berkeley. However, the temporal
locality is a fine grained result measurement, tak-
ing into account each memory reference as the code
runs. Computational density is only concerned with
input data to the algorithm, not fetching instructions
or out-of-band data. Computational density is also
specifically designed to be formulated analytically as
a tool to analyze the general memory footprint of an
algorithm.

The computational density function generally has
a value of 1

νs
when α is just large enough to hold

operands for one operation

ρ(α = νs) =
1

νs
,

increases with increasing α, and then assumes a con-
stant value when α is larger than M :

ρ(α ≥ M) =
Z

M
.

Another way to parameterize the computational
density function is in terms of a data re-use function,
ϕ:

ρ(α) =
Z

M

1

ϕ(α)
. (2)

The re-use function can be seen as a re-use penalty;
that is, if a memory size of α means that all the data
must be loaded twice, then the value of ϕ with α
as that memory size will be equal to 2. The higher
the penalty function, the lower number of effective
computations can be performed per byte of loaded
data. The ideal situation is for data to only have to
ever to be loaded once, ϕ = 1.

An important point to emphasize is this formal-
ism references the general idea of a cache, but it is en-
tirely a characterization of the algorithm itself with-
out reference to any hardware. This function can be
analytically derived from the code or algorithm with-
out any hardware knowledge.

3

3.1 Algorithm A: Vector Multiply

The first algorithm is simplest to characterize. Each
step of the problem takes two operands and generates
one result. Each input operand is used only once,
with no opportunity for data re-use. The possible
operations function is η = n where n is the number of
entries available from each vector. Reparameterizing
in terms of α:

α = 2 · n · s; n =
α

2s
; η(α) =

α

2s

ρA(α) =
η(α)

α
=

(

α
2s

)

α

ρA(α) =
1

2s
(3)

where s is the size of the input operands. A func-
tional graph of ρA versus α produces a completely
flat graph.

Notice that ρA is not a function of the local store
size α, and because this is a streaming algorithm,
each piece of input data is operated on only once.

3.2 Algorithm B: Matrix Multiply

Matrix multiply has a significant amount of data re-
use in the algorithm. The larger the constituent blocks,
the more times each matrix value is used. In a square
matrix multiply, if the calculation is broken down into
sub-blocks, the number of times each value is used is
proportional to the size of the sub-blocks.

If we define an multiply-add (or multiply-accumulate)
as a single operation, for a square matrix multiply
with n by n matrices, the number of operations pos-
sible is ηB = n2(n − 1) ≈ n3 for significantly large
values of n. The memory required to store matrices
of size n is α = 2n2s, so

n =

√

α

2s
; ηB(α) = n3 =

(α

2s

)
3

2

ρB(α) =
ηB(α)

α
=

(

α
2s

)
3

2

α

ρB(α) =

√
α

(2s)
3

2

(4)

3.3 Algorithm C: all-to-all interaction

An all-to-all data topography is typical of physical
simulations with action-at-a-distance forces needing
to be calculated. As stated above, the total number

of particle-to-particle forces to be calculated is n2

2 −n.

ηC ≈
n2

2

The amount of storage is proportional to the number
of particles to be stored, so finding the computational
density function:

α = n · s ; n =
α

s

ηC(α) =
n2

2
=

(

α
s

)2

2
=

α2

2s2

ρC(α) =
ηC(α)

α
=

(

α2

2s2

)

α

ρC(α) =
α

2s2
(5)

4 Performance Evaluation

Evaluating the limits of the performance of an appli-
cation uses knowledge of the application as expressed
in its computational density function and knowledge
of the hardware itself. The hardware is modeled as a
series of associated memory size (µ), bandwidth (β),
and latency(λ) values. Each layer of a memory hierar-
chy places a limit on the ability to pass data and thus
a limit on the computational speed, or throughput
(σ). The slowest value for σ will be the upper limit
of the computational throughput of the algorithm on
that hardware (imposed by the memory system).

The following equation (derived in appendix A)
shows the computation of the speed for a given layer
in the memory hierarchy:

σ(µ, β, λ) = ρ(µ) · β ·
1

(

1 + βλ
µ

) (6)

This equation is based on the premise that the
computation is finished when the final input data is
transferred into the processor. These estimates ig-
nore the transport of output data. This is done for
simplicity’s sake and is valid because this method is
designed to produce an upper limit on performance.

The total time taken to transfer the input data
through the layer represented by µ, λ, and β is the
sum of all the transfer times. The dimensionless num-
ber βλ

µ
is the fractional impact that the transfer la-

tency has on the total transfer time. Its meaning is
more clearly expressed as λ/µ

β
, the latency as a frac-

tion of time time taken to fill up that layer of memory
once. In a well-balanced system, this fraction will be
much less than one, meaning that layer was designed
so that the latency is of minimal impact. In most
systems that fraction is small enough to be neglected
so the calculation rate equation becomes

σ = ρ(µ) · β (7)

Note in a well-balanced system (βλ
µ

≪ 1) the latency

of transfers (λ) has disappeared.

4

4.1 Performance prediction on the SRC

MAP-C

The MAP-C is a reconfigurable computing processor
manufactured by SRC Incorporated[9] and installed
in the Map-6 reconfigurable computer. The MAP-
C consists of two Xilinx Virtex-2 6000 FPGAs and
up to 7 banks of 4 MB, 64-bit-wide RAM (called
“On-Board Memory”, or OBM banks) attached di-
rectly to the FPGA. The MAP Processor communi-
cates with the system via a communications module
called a SNAP that plugs into a DIMM slot on the
motherboard.

The SRC 6/MAP-C system has three layers of
communication[10] between the main RAM (where
the problem is presumably stored) and the execu-
tion units on-board the FPGA. We call the first layer
“layer 0”, which exists inside the FPGA itself. Trans-
fers within the FPGA happen clock-to-clock, so la-
tency is effectively zero λ0 ∼ 0. The bandwidth feed-
ing the registers is the “infinite bandwidth”[11] that
is discussed in FPGAs.

The second layer of communication is from the
OBM to the FPGA block rams. This layer is defined
by the FPGAs interface to the OBM banks. The
latency is effectively zero (it’s only a couple of clocks
and it’s hidden by the compiler), the total size[12] is
µ1 = .6MB (roughly the size of all of the block RAM
on the FPGA), and the bandwidth is β1 = 6.4 GB/s
(8 bytes per bank per clock from 8 effective banks1

at 100 MHz).
The next layer of communication is from main

RAM through the SNAP to the MAP processor. The
bandwidth through the SNAP is β2 = 1.4 GB/s, the
transfers are feeding the OBM so µ2 = 28 MB, and
the latency to start transfers has been measured to
be λ2 ≈ 20µs. Transfer latency is not zero, but it is
small enough that its effect is amortized over many
memory transfers:

β2λ2

µ2
=

(1.4 GB/s)(20µs)

(28 MB)
≈ .001

4.2 Algorithm A on MAP-C

Performance prediction is determining how well the
characteristic computational density of an algorithm
fits within the memory hierarchy of a piece of hard-
ware. We put the characteristic ρ function of the
algorithm together with the characteristics of layers
of memory hierarchy (each represented by a set of β,
µ and λ) and the lowest resulting value of calculation
speed, σ, will be the limit of that algorithm on that
hardware.

1There are 7 physical OBM banks. Six sit between the user

algorithm FPGAs and the SNAP. The seventh sits between

the user FPGAs and can be read by both of them simultane-

ously, for an effective 8 simultaneous banks if both FPGAs are

participating in the calculations

The computational density of algorithm A is a
constant value:

ρA =
1

2s

and for the sake of discussion we assume a long vec-
tor of single precision floating point values. First we
estimate algorithm A on layer 1 of the SRC map

σA,1 = ρA(µ1) · β1 =
1

2s
· β1 =

1

2(4 B)
· (6.4 GB/s)

σA,1 = 0.8
G ops

sec
(8)

For layer 2 of the Map-C, ρ is a constant, so µ
does not enter the equation, the only difference is
β2 = 1.4GB/s so

σA,2 =
1

2(4 B)
· (1.4 GB/s) = 0.46

G ops

sec

Given that these operands are single precision float-
ing point values, the transfer from memory will limit
this calculation (and any that have the same sort
of data access pattern) to .46 GF (single precision).
That is unrelated to what kind of operational blocks
you can fit into the FPGA.

This analysis is not a complaint about the SRC
MAP processor design; the conclusion is that data
access topology of this type does not fit well on a
MAP processor. When using reconfigurable architec-
tures, we should stress that the this sort of analysis
is a crucial first step before attempting to make some
piece of code run on an FPGA-based processor (or
any other architecture). Before going through the
trouble of building an algorithm that works on an ar-
chitecture one should do the preliminary analysis to
determine if it can feed data to the processor such
that it is worth doing at all.

In this case of algorithm A, since the operations
in question are multiplies, that means that that the
highest floating point operational speed possible in
this problem would be 1.6 single precision Gigaflops.
This is independent of the number of floating point
cores that can be instantiated on the Map-C proces-
sor. The result of this analysis is that regardless of
the programming techniques, this hardware is not a
good fit for this algorithm, due principally to insuffi-
cient bandwidth into the MAP processor.

4.3 Algorithm B on MAP-C

Algorithm B is much more typical of scientific com-
putational problems; in fact, matrix multiplication is
the basis for the popular benchmarking suite High
Performance Linpack. The computational density
of algorithm B does have depend on the size of the
cache,

ρB(α) =

√
α

(2s)
3

2

5

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35
 0

 50

 100

 150

 200

 250

 300
ba

nd
w

id
th

 (
G

B
/s

)

co
m

pu
ta

tio
na

l d
en

si
ty

local store (MB)

computational density (ops/B)

bandwidths

Figure 1: Graph of ρB(α) and values of β.

so the calculation speed will depend on both β and
µ.

Assuming again that the operands are 4-byte val-
ues, for the innermost communication layer, between
the OBM and the FPGA,

σB,1 = ρB(µ1)β1 = ρB(.6 MB)(6.4 GB/s)

σB,1 = 219 G ops/sec (9)

Calculation speed for the communications between
main RAM and the Map:

σB,2 = ρB(µ2)β2 = ρB(24 MB)(1.4 GB/s)

σB,2 = 303 G ops/sec

The results of the estimation of algorithm B paint
a very different picture than algorithm A. If these
were the calculational speeds of floating point opera-
tions, the limits would be 220 GF , quite respectable
for any processor. The important point of this anal-
ysis is that due to the shape of the computational
density curve, the bottleneck on this calculation is
not the link to main memory, but the link between
the OBM and the FPGAs in the MAP processor, al-
though the two are fairly balanced for this problem
topology.

Figure 1 illustrates the increasing ρ function and
decreasing values of β that contribute to almost uni-
form values of σ across the different memory inter-
faces.

4.4 Algorithm C on Map-C

For the all-to-all interaction, assume that each par-
ticle takes up 32 bytes, 12 bytes for x,y,z position,
12 bytes for accumulated force values and 8 bytes for
index data.

ρC(α) =
α

2s2
=

α

2048 B

σC,1 = ρC(µ1) · β1 = ρC(.6 MB)(6.4 GB/s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35
 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

ba
nd

w
id

th
 (

G
B

/s
)

co
m

pu
ta

tio
na

l d
en

si
ty

local store (MB)

computational density (ops/B)

bandwidths

Figure 2: Graph of ρC(α) and values of β.

σC,1 = 1.88
T ops

sec

σC,2 = ρC(µ2) · β2 = ρC(28 MB)(1.4 GB/s)

σC,2 = 19.1
T ops

sec

This is an extremely fast computation rate, to any
measure. Clearly, the memory system is not the lim-
iting factor in the topology of this computation. The
computational density and β values are illustrated
in figure 2. The computational density is linear, so
climbs much more strongly from .6 to 28 MB, and so
is dominant over the decreasing bandwith.

What would the effect be if the input data were
part of a larger set of data structures, say, of size
512 B per data point:

ρC(α) =
α

2s2
=

α

262, 144 B

σC,1 = ρC(µ1) · β1 = ρC(.6 MB)(6.4 GB/s)

σC,1 = 14.7
G ops

sec

Here the n2 data topology fits into this data move-
ment scheme so well that it can tolerate 512 B per
data point without bogging down in data transfers.

5 Real performance analysis

The performance analysis in this paper is not real
performance prediction; rather it targets the general
concern of whether or not an algorithm will fit within
the memory subsystem that is designed to feed it.
Using the SRC MAP-C as a baseline, the answer for
the three explored topologies are “No”, “Maybe”, and
“Yes”. But an algorithm fitting within the data flow
architecture of a system is not a sufficient condition,
merely a necessary one. If an algorithm is shown to
fit within the data delivery capabilities of an FPGA

6

hardware architecture, then the much longer task of
porting the algorithm to the FPGA system begins.

The ultimate speed, in many cases, will be lim-
ited by the number of functional units that can be in-
stantiated on the surface of the FPGA. As an exam-
ple, Oak Ridge National Laboratory found[13] that
the FPGAs on the MAP-C processor could instan-
tiate 25 multiply-accumulate units per FPGA, or 50
in all. The result from equation 9 divided by the
100 MHz clock on the MAP processor shows that the
memory architecture is capable of sustaining at least
2000 MAC operations per second. Compared to only
being able to instantiate 50 processors, a that matrix
multiply on this hardware is overwhelmingly CPU-
bound.

6 Conclusions

This paper sets forth a simple formalism to apply
to any application to determine its suitability for an
FPGA-based architecture, or any accelerator archi-
tecture. By combining the application analysis with
performance data from a hardware system, any lim-
its that the memory system of that hardware would
impose on the running of that algorithm will be dis-
covered. Based on that information, the program-
mer or scientist can make an informed decision about
whether or not the application could possibly be ac-
celerated by such an architecture.

Furthermore, the three applications explored in
this paper are indicator algorithms for memory per-
formance. Applications with memory characteristics
like algorithm A will tend to be memory bound, like
algorithm C will tend to be CPU bound. and like
algorithm B will tend to be balanced. This approach
can be used even at the design stage of codes and
hardware to predict how the resulting algorithm will
fit into the computer system.

A Derivation of computational

speed function

A given layer in the memory hierarchy has as local
store of size µ. To bring the whole input data set of
size M in, then, it must be divided up into a number
of chunks, γ = M

µ
. The time to transfer each chunk

is τ = λ + µ
β
. So under ideal conditions, where each

byte must be loaded only once (ϕ = 1), the total time
Tideal to bring all of the data M into the processor is

Tideal = γ · τ =

(

M

µ

) (

λ +
µ

β

)

Tideal = M

(

λ

µ
+

1

β

)

To calculate T . the total time to load all data includ-
ing reload penalties, just multiply by ϕ:

T (β, µ, λ) = Tideal(β, µ, λ)ϕ(µ) = M

(

λ

µ
+

1

β

)

ϕ(µ)

Solve equation 2 for ϕ

ϕ(µ) =
Z

M

1

ρ(µ)

and substitute into T :

T (β, µ, λ) = M

(

λ

µ
+

1

β

) (

Z

M

1

ρ(µ)

)

T (β, µ, λ) = Z

(

1

ρ(µ)

) (

λ

µ
+

1

β

)

The computational speed (as limited by this memory
transfer layer) is the total number of computations
divided by the total time to do them:

σ(β, µ, λ) =
Z

T
=

Z
(

Z
(

1
ρ(µ)

)(

λ
µ

+ 1
β

))

Multiply the resulting expression by β
β

to make the
denominator into the form 1 + ǫ,

σ(β, µ, λ) = ρ(µ)
1

(

λ
µ

+ 1
β

)

(

β

β

)

which derives βλ
µ

and the final equation for σ:

σ(β, µ, λ) = ρ(µ) · β ·
1

(

1 + βλ
µ

)

References

[1] A. Aggarwal, B. Alpern, A. Chandra, , and
M. Snir. A model for hierarchial memory. In
STOC ’87: Proceedings of the nineteenth annual
ACM conference on Theory of computing, pages
305–314, 1987.

[2] A.Snavely, N.Wolter, and L.Carrington. Model-
ing application performance by convolving ma-
chine signatures with application profiles. In
IEEE 4th Annual Workshop on Workload Char-
acterization, 2001.

[3] Darren J. Kerbyson and Philip W. Jones. A Per-
formance Model of the Parallel Ocean Program.
Int. J. High Performance Computing Applica-
tions, 2005.

[4] Kevin J. Barker, Scott Pakin, and Darren J.
Kerbyson. A Performance Model of the Krak
Hydrodynamics Application. In International
Conference on Parallel Processing (ICPP 2006),
Columbus, Ohio, 2006.

7

[5] James C. Phillips, Gengbin Zheng, Sameer Ku-
mar, and Laxmikant V. Kale. Namd: Biomolec-
ular simulation on thousands of processors. In
Supercomputing, 2002.

[6] Steven Gottlieb. Benchmarking and tuning
the milc code on clusters and supercomputers.
Nucl. Phys. B, 106-107:1031–1033, 2002.

[7] J. Weinberg, M. O. MCracken, a. Snavely, and
E. Strohmaierm. Quantifying locality in the
memory access patterns of hpc applications. In
Supercomputing, 2005.

[8] J. Hennessy and D. Patterson. Computer ar-
chitecture: A Quantitative Approach. Morgan
Kaufmann Publishers, 1990.

[9] Src Computers Incorporated.
http://www.srccomp.com.

[10] SRC C Programming Environment v2.1 Guide.
SRC Computers Inc.

[11] Jonathan Rose and Dwight Hill. Architectural
and physical design challenges for one-million
gate fpgas and beyond. In Proceedings of the
1997 ACM fifth international symposium on
Field-programmable gate arrays, pages 129–132,
1997.

[12] Jon Huppenthal (SRC Computers). personal e-
mail. 20 µs latency measured at NCSA, other
numbers from SRC. Thank you for letting us use
this information.

[13] M. C. Smith, J. S. Vetter, and S. R. Alam. Sci-
entific computing beyond cpus: Fpga implemen-
tations of common scientific kernels. In MAPLD,
2005.

8

