University of Florida EEL 4930/5934 (Reconfigurable Computing)

Midterm 2 SAMPLE QUESTIONS – Fall 2007, Dr. Stitt, Dr. Lam

Name: _________________

UFID:__________________
Total Points (100)
1. Systolic arrays

a) Create a fully-pipelined datapath for the following code. Do not perform any optimizations (loop unrolling, etc.).

short a[100], b[103];
for (i=0; i < 100; i++)

a[i] = 3*b[i] + 5*b[i+1] + 11*b[i+2] + 4*b[i+3];

b) Calculate speedup of the fully-pipelined 300 MHz circuit compared to software execution on a microprocessor (assuming 20 instructions for each iteration, a CPI of 1.5, and a clock frequency of 3 GHz). Assume memory bandwidth is sufficient for full pipelining.

c) Assuming that memory can deliver 128 bits per cycle, how many iterations of the loop can be performed in parallel? (Ignore any creative buffering, i.e. assume that data from previous memory fetches is not reused)

d) Calculate the speedup of the circuit when utilizing the amount of loop unrolling determined in part c

e) Draw a block diagram of the entire circuit (not just the datapath)

2. Create a fully-pipelined datapath for the following code. Do not unroll the loop.

short a[100], b[100];
for (i=0; i < 100; i++){

if (b[i] < 0)

 a[i] = b[i] + 1;

 else

 a[i] = b[i] - 1;

 }

3. Create a fully-pipelined datapath for the following code. Do not perform any optimizations. Explain why without any optimizations, the pipeline may frequently stall. Be specific.

short a[100], b[100], c[100], d[100], e[100];
for (i=0; i < 100; i++){

a[i] = b[i]+c[i]+d[i]+e[i];

}

4. Create a fully-pipelined datapath for the following code. List any optimizations needed to eliminate loop-carried dependencies. Show that such optimizations enable a fully pipelined datapath, assuming memory delivers 128 bits of data every cycle.

short a[100], b[103];
for (i=0; i < 100; i++){

 val = 0;

 for (j=i; j < i+4; j++) {

 val += b[j];

 }

a[i] = val;

}

5. For the following code:

int f(short a[100]) {

 int x,y,z;

 x=0; y=0; z=50;
 for (i=0; i < 100; i++){

 if (a[i] < z) {

 x += a[i];

 }

 else {

 y += a[i];

 }

 }

 return x+y;

}

(a) Manually create a FSM representing the controller, using the methodology discussed in the lecture slides. (Do not create a systolic array) Ignore the details of memory accesses.

(b) Manually create a datapath that works with the controller from part a. Show all inputs/ouputs, and control signals. Ignore the details of memory accesses.

(c) Calculate the execution time in terms of cycles. List any assumptions you make.

(d) Explain why this circuit is likely much slower than a systolic array-based circuit, assuming a systolic array is possible.

6. Optimize the following code, by showing the resulting code after each applied technique. Assume all variables are needed after this code executes.

x = 0;

y = a + b;

if (x < 15)

 z = a + b - c;

else

 z = x + 12;

o = z * 12;

7. Schedule the following circuit:

(a) Using ASAP scheduling

(b) Using minimum-latency ALAP scheduling

c) What is the minimum number of resources required for the ASAP schedule (assuming an ALU implements +/-, and a multiplier implements *)?

d) What is the minimum number of resources required for the ALAP schedule?

e) What are the resource requirements for a fully-pipelined implementation?

8. Trace the steps of minimum-latency resource-constrained list scheduling on the following DFG. Draw the priorities next to each node.

	
	

	
	

	
	

	
	

	
	

	
	

9. Trace the steps of minimum-latency resource-constrained list scheduling on the following DFG, assuming that multiplications take 2 cycles and divides take 5 cycles. Draw the priorities next to each node.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

10. Trace the steps of minimum-resource latency-constrained list scheduling on the following DFG. Show the last possible cycle that an operation can be scheduled next to each node in the original graph. Show the slack for each candidate in parentheses. Show how the resource requirements change for each cycle on the left (Assume that there is initially 1 ALU and 1 Mult). Show the final resource requirements.

	
	

	
	

	
	

	
	

	
	

	
	

11. Bind the following scheduled DFG using clique partitioning. Show the compatibility graph and cliques. Draw ovals around shared resources. Assume that the circuit uses 2 multipliers and 2 ALUs.

12. Bind the following scheduled DFG using the left edge algorithm. Draw ovals around shared resources. Assume that the circuit uses 2 multipliers and 2 ALUs. Work from top to bottom if there are multiple candidates.

13. Translate the binding from the previous problem into a datapath.

Candidates

Resource Constraints: 2 ALU(+/-), 2 mults, 1 div

Mults

ALUs

Cycle6

Cycle5

Cycle4

Cycle3

Cycle2

Candidates

Resource Constraints: 2 ALU(+/-), 1 mult

Mults

ALUs

Cycle6

Cycle5

Cycle4

Cycle3

Cycle2

Cycle1

-

*

+

-

+

*

+

*

Cycle6

Cycle5

Cycle4

*

Cycle4

Cycle3

Cycle5

Cycle2

Cycle1

Cycle1

*

/

+

-

Candidates

Latency constraint = 4 cycles

Mults

ALUs

Cycle6

Cycle5

Cycle4

Cycle3

Cycle2

Cycle1

Cycle6

+

+

Cycle1

Cycle3

-

*

Cycle2

-

+

*

-

*

+

-

+

*

+

*

+

*

+

+

Cycle8

Cycle7

Cycle10

Cycle9

1

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

e

d

c

Cycle7

Cycle3

Cycle4

Cycle6

Cycle5

Cycle2

Cycle1

8

7

6

5

4

3

2

1

*

k

e

d

c

Cycle1

8

7

6

5

4

3

2

1

*

k

j

-

+

*

*

Cycle7

Cycle3

+

+

*

g

f

b

a

Cycle4

Cycle6

Cycle5

Cycle2

j

-

+

*

*

+

+

*

g

f

b

a

1

2

3

4

5

6

7

Div

Div

Mult

ALU

Resource Amounts

