
Thread Warping: A Framework for Dynamic Synthesis of
Thread Accelerators

Greg Stitt
Department of Electrical and Computer Engineering

University of Florida
gstitt@ece.ufl.edu

Frank Vahid
Department of Computer Science and Engineering

University of California, Riverside
vahid@cs.ucr.edu

Also with the Center for Embedded Computer Systems, UC Irvine

ABSTRACT
We present a dynamic optimization technique, thread warping,
that uses a single processor on a multiprocessor system to
dynamically synthesize threads into custom accelerator circuits on
FPGAs (field-programmable gate arrays). Building on dynamic
synthesis for single-processor single-thread systems, known as
warp processing, thread warping improves performances of
multiprocessor systems by speeding up individual threads and by
allowing more threads to execute concurrently. Furthermore,
thread warping maintains the important separation of function
from architecture, enabling portability of applications to
architectures with different quantities of microprocessors and
FPGA—an advantage not shared by static compilation/synthesis
approaches. We introduce a framework of architecture, CAD
tools, and operating system that together support thread warping.
We summarize experiments on an extensive architectural
simulation framework we developed, showing application
speedups of 4x to 502x, averaging 130x compared to a
multiprocessor system having four ARM11 microprocessors, for
eight benchmark applications. Even compared to a 64-processor
system, thread warping achieves 11x speedup.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems.

General Terms
Performance, Design.

Keywords
Synthesis, FPGA, threads, multi-core, dynamic synthesis, warp
processing, thread warping, just-in-time compilation.

1. INTRODUCTION
Modern processing architectures are increasingly multi-core,
containing multiple processors (cores) on a single chip [13][15],
even near 100 [18]. Multi-core devices are commonly connected
on boards or backplanes to form even larger multiprocessor
systems [13][26]. The mainstreaming of multiprocessor

architectures increases the number of applications written using
multiple threads, which can better utilize multi-core parallelism
compared to single-threaded applications.

Field-programmable gate array (FPGA) devices are being
incorporated into many multiprocessing systems, by
multiprocessor vendors [5][14][26], FPGA vendors [29][30], and
third-party vendors [6]. Such incorporation is due to FPGAs
providing several-order-of-magnitude speedups for many
applications ranging from embedded systems [11][21][25] to
supercomputing [6]. Yet, a widely recognized barrier to wider
FPGA utilization is the challenge of programming mixed
multiprocessor/FPGA systems, with extensive language and tool
research seeking to overcome the barrier [8][9][11][16][21].

Meanwhile, multiprocessor architecture researchers have
proposed a paradigm in which one processor performs
optimizations that benefit other processors [19][31]. Such
optimizations might include detecting and re-compiling (with
high optimization) critical code regions, just-in-time compiling
critical regions to a processor’s native instruction set (e.g., VLIW
rather than x86), scheduling threads, scaling voltages, etc.
Separately, we previously developed warp processing, which uses
an on-chip processor to dynamically remap critical code regions
from processor instructions to FPGA circuits [21] using runtime
synthesis. That work showed that aggressive decompilation can
often recover enough high-level information (e.g., loop, arrays,
subroutines) from a binary to yield synthesized circuits
competitive with those synthesized from source code.

We combine these concepts, by proposing a new dynamic
multiprocessor optimization technique, thread warping, that uses
one processor to synthesize threads into circuits on FPGAs.
Despite the fact that modern synthesis tools have long execution
times, we show that order-of-magnitude application speedups can
be obtained for numerous compute-intensive benchmark
applications. Our contribution consists of integrating existing and
new CAD techniques into a framework capable of dynamically
synthesizing thread accelerators, allowing an operating system to
schedule threads onto both microprocessors and custom circuits.

This paper is organized as follows. Section 2 provides a technique
overview. Section 3 describes on-chip CAD tools for synthesizing
thread accelerators. Section 4 discusses operating system support.
Section 5 presents experimental results.

2. OVERVIEW
Figure 1(a) overviews thread warping for a multithreaded
application, which initially creates threads to execute function f(),
as shown in step 1 of the figure. Because the number of threads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009...$5.00.

exceeds the number of processors, the operating system places
threads in a queue as they await an available processor, as shown
in step 2.

Our framework monitors this queue, analyzes waiting threads, and
utilizes on-chip CAD tools to create custom accelerator circuits
for the f() function (step 3). After some time (32 minutes using
existing commercial synthesis tools for our benchmark set), the
CAD tools finish mapping the accelerators onto the FPGA.
Assuming the application has not finished, as in Figure 1(b), the
operating system (OS) begins scheduling threads onto both FPGA
accelerators and microprocessor cores (step 4), resulting in a
speedup for a single execution. Single-execution speedups are
possible for long-running applications from domains such as
scientific computing.

Of course, for many applications, 32 minutes of synthesis may
exceed the application’s execution time. For shorter applications,
such as embedded systems, the framework caches accelerators in
a non-volatile library for future executions, thus amortizing the
synthesis time over the repeated executions, as in Figure 1(c),
resulting in an average speedup of 130x compared to four ARM11
microprocessors for our benchmarks. Ultra-efficient synthesis
techniques [20][21], possibly coupled with fast, synthesis-oriented
FPGAs [1], may help make single-execution speedups possible
for more applications.

Although the architecture in Figure 1 utilizes four cores and an
on-chip FPGA, we could extend thread warping to handle any
number of cores, and off-chip FPGAs, with minimal changes to
the CAD tools and OS.

Instead of using thread warping, a designer could utilize standard
static synthesis techniques (e.g., [11]) at compile time to create
custom accelerators for threads, using specialized tools and/or
languages. Although a static approach is an excellent technical
solution, many software developers may resist such an approach
due to the requirement of using a non-standard software tool flow.
Thread warping hides the FPGA by dynamically synthesizing
accelerators, allowing software developers to take advantage of
the performance improvements of custom circuits without any

changes to tool flow – just as multithreaded programs make use of
more processors without rewriting or recompiling code. In
addition, thread warping adapts the system to changing thread
behavior, and different mixes of resident applications. For
example, thread warping can potentially create different
accelerator versions depending on the amount of available FPGA
at different points during execution.

3. ON-CHIP CAD TOOLS
We define the following terms. A thread creator is a function that
contains the API (application programming interface) call that
creates a thread. A thread function is the function that a thread
executes. A thread is the unit of execution that the OS schedules.
A thread group is a collection of threads, created from the same
instruction address, that share input data.

Figure 2(a) shows the on-chip CAD tool flow used by thread
warping. Initially, queue analysis analyzes the thread queue to
determine the union of waiting thread functions and a set of
thread counts representing the occurrences of each thread function
in the queue. Next, if accelerators do not already exist for the
waiting thread functions, accelerator synthesis creates a custom
accelerator circuit for each thread function and stores the
accelerator in the accelerator library. When threads cannot be
implemented entirely as FPGA circuits, accelerator synthesis may
create an accelerator that acts as a coprocessor for one of the main
microprocessors. To communicate between the microprocessor
and accelerator, accelerator synthesis creates an updated software
binary. It also creates a thread group table (TGT) that specifies
all thread groups. After accelerator synthesis completes,
accelerator instantiation determines the number of accelerators to
place in the FPGA for each thread function. Accelerator
instantiation outputs a circuit, which the place & route tool
converts to an FPGA bitstream. Accelerator instantiation also
creates a schedulable resource list (SRL) that informs the OS of
available processing resources.

The OS invokes the on-chip CAD tools when the thread queue
reaches a predefined size, and also periodically to adapt the
system to changes. If new thread functions are present, then

Figure 1: Thread warping: (a) architecture and overview, (b) usage when application runtimes greatly exceed synthesis times, as for
scientific computations that run for hours or days, (c) usage when applications repeat, in which case synthesized results can be stored in a

library and retrieved when needed.

µP (1st execution)
On-chip CAD

FPGA

 µP

OS schedules threads to
available µP’s, while
remaining threads wait

1

2 CAD synthesizes thread accelerators
for waiting threads and stores
accelerators in library for future use

OS schedules threads to accelerators
and µP’s, exploiting thread-level and
fine-grained parallelism

3

for (i=0; i < 20; i++)
 createThread(f(), i); 4

Application creates threads

f()

Acc.
Lib

Time

f() f() µP

f()

µP OS

 f() f() µP

f()

µP

FPGA

Future executions

µP

On-chip CAD

Time

FPGA

1st execution
Single-execution speedup
(possible for long-running applications)

Recurring speedup

(a)

(b)

(c)

accelerator synthesis considers creating new accelerators.
Alternatively, if thread counts change, accelerator instantiation
changes the types/amount of accelerators in the FPGA.

The current on-chip CAD tools support ARM11 binaries
compiled with pthread functions calls. Pthread support is provided
by the OS and is discussed in Section 4.

The CAD tools use numerous heuristics, but space does not allow
detailed discussion of each. Key details regarding the novel
techniques for accelerator synthesis and accelerator instantiation
are discussed in the following sections.

3.1 Accelerator Synthesis
Figure 2(b) illustrates the tool flow of accelerator synthesis,
which initially uses decompilation techniques [4], drawn from
previous work in binary synthesis [27], to recover high-level
constructs such as functions, function parameters, loops, if
statements, arrays, etc. Hw/Sw partitioning analyzes decompiled
thread functions, using previous techniques (e.g., [7]), to
determine which regions to implement as circuits. Next, memory
access synchronization analyzes thread functions, detects threads
with similar memory access patterns, and combines those threads
into thread groups that share memory channels and have
synchronized execution. High-level synthesis converts the
decompiled representation of the thread function (or other region)
into a custom circuit, represented as a netlist. In addition, the
Binary updater optionally modifies the original software binary to
communicate with accelerators, in the case where an entire thread
function is not implemented on the FPGA. We implement the
binary updater using techniques from WARTS [12]. When
implementing accelerators for entire thread functions, accelerator
synthesis does not modify the thread binary.

3.1.1 Memory access synchronization
Inter-thread communication is a common bottleneck of
multithreaded applications, and is often implemented using shared
memory. This bottleneck poses a challenge for FPGA circuits,
which may access shared memory using a DMA with a few
channels. Thread warping further complicates memory accesses
by requiring simultaneous access for possibly dozens of thread
accelerators. Limited memory bandwidth restricts the number of

DMA channels, forcing accelerators to multiplex data over a
shared channel, reducing performance.

We observed that for some parallel applications, the required
number of channels could be reduced because multiple threads
may read the same data from memory. In this situation, memory
access synchronization (MAS) can potentially combine memory
accesses from multiple accelerators onto a single channel, and use
a single read to service many accelerators. We refer to this
situation as a “combinable” memory access.

To support combinable memory accesses, we developed MAS
techniques to analyze memory access patterns of thread functions
to detect overlapping accesses. MAS detects overlapping regions
by determining all fixed-address memory reads in the control/data
flow graph of each thread function. To increase the number of
fixed-address reads, MAS unrolls loops to generate fixed-address
reads for array calculations. MAS also treats stack-relative
accesses as combinable for threads that have the same input
parameters because in this case, the stack operations refer to the
same data. MAS annotates combinable accesses, allowing high-
level synthesis to combine data onto a single channel. MAS
assigns all remaining non-fixed accesses onto a separate channel
that multiplexes the data using different base addresses.

To implement a combined memory access, the OS synchronizes
the execution of all involved accelerators. To achieve this
synchronization, MAS analyzes thread creators and detects loops
that create threads with combinable accesses, called thread
groups. MAS determines the size of a thread group based on the
number of threads created from a particular instruction address.
Finally, MAS stores the thread group into the thread group table
(TGT). The OS utilizes the TGT to synchronize all threads in the
thread group, as discussed in Section 4.

3.1.2 High-level synthesis
To perform high-level synthesis, we use existing techniques for
optimization, scheduling, resource allocation, and binding [24].
We also utilize smart buffers [10] to reduce memory accesses and
improve pipeline throughput.

To support synthesis of thread synchronization, synthesis initially
searches the control/data flow graph of each thread function to
identify unsupported synchronization primitives. Our synthesis

Figure 2: (a) On-chip CAD tool flow, which initially analyzes the thread queue and creates custom accelerators for waiting threads using
the illustrated (b) accelerator synthesis tool flow.

Accelerator Instantiation

Thread Queue

Thread
Functions

Thread
Counts

Accelerator Synthesis

Accelerator
Library

FPGA

Not In Library? Done
Accelerators
Synthesized?

Queue Analysis

false false

true true

Decompilation

Memory Access
Synchronization

High-level
Synthesis

Thread Functions

Netlist

Binary Updater

Updated
Binary Updated

Binary
Schedulable

Resource List

(a) (b)

Place&Route
Thread
Group
Table

Netlist

Hw/Sw Partitioning

Hw Sw

Thread
Group
Table

Bitfile

tools currently support pthread create, join, mutex, and semaphore
functions. If a thread function contains other calls, the OS will
always schedule corresponding threads onto microprocessors.
Software threads can utilize the entire pthread API.

For each semaphore, synthesis creates a controller that requests a
semaphore operation from the OS and waits for the operation to
complete. The semaphore-operation request triggers an interrupt,
allowing the OS to service the request in an interrupt service
routine. If an accelerator requests a lock for a locked semaphore,
the OS adds the request to a synchronization queue, checked
when another thread unlocks the semaphore. To handle
synchronization requests from multiple accelerators, the OS uses
an arbiter generated during accelerator instantiation. We
considered hardware mutexes [2], but they would have required
significant changes to the software binary.

Synthesis synchronizes thread groups by using a memory access
scheduler circuit that initially time multiplexes all uncombined
accesses over a single DMA channel and then triggers a combined
access that delivers data to all involved accelerators.

The CAD tools use Xilinx ISE for register-transfer level
synthesis. We currently execute ISE on a 3 GHz Pentium IV
because no ARM11 version exists. However, our results are based
on estimated ARM11 synthesis execution times, which we
obtained from a comparison of runtimes on two similar systems in
previous work [21]. In this paper, we focus mostly on recurring
speedups, therefore the accuracy of the synthesis time estimates
does not affect the results, and is intended to give an idea of how
long the tools must execute before accelerators are available.

3.2 Accelerator Instantiation
After accelerator synthesis completes, accelerator instantiation
determines the number of each type of accelerator to include in
the FPGA for best performance. Some applications may benefit
from using many accelerators for a single thread function, while
others may benefit from a small number of accelerators for
different thread functions. Furthermore, for some applications, the
requirements may change during execution.

We map the problem to the 0-1 knapsack problem, where each
item to be placed in the knapsack is an accelerator and the FPGA
area represents the knapsack capacity. We map the area of each
accelerator to the weight of each item. We define the profit of
each accelerator as the product of the thread count percentage and
the thread function speedup, defined as follows. Thread count
percentage is the number of thread function occurrences in the
queue divided by total queue size. Thread function speedup is the
software performance of the thread divided by the accelerator
performance. We then use a greedy knapsack heuristic with
O(nlgn) complexity to generate a solution.

Accelerator instantiation also synthesizes an appropriate arbiter
(Section 3.1.2) to handle the synchronization requests for each
accelerator. Finally, accelerator instantiation passes the netlist for
all accelerators to placement and routing to generate a bitfile for
the FPGA. In addition, accelerator instantiation updates the
schedulable resource list with the new resource amounts.

3.3 Placement and Routing
We use Xilinx ISE, running on a Pentium IV, for placement and
routing, and again estimate ARM11 execution times as discussed

in Section 3.1.2. Alternatively, because existing commercial tools
were not designed for fast dynamic synthesis, we could use
specialized placement and routing techniques designed for fast
FPGA mapping [20] or just-in-time (JIT) FPGA compilation [22],
which reduce placement and routing times by 10x to 46x.
Specialized FPGAs fabrics have also been introduced to enable
fast placement and routing [1].

After placement and routing, the CAD tools store the bitfile in the
accelerator library, allowing all future executions to immediately
utilize the accelerators.

3.4 Limitations
The original code must use the pthread API. Ideally, the approach
would support any thread API by detecting use of threads in the
binary during execution. However, such detection is an open
problem. Alternatively, the technique could use instruction sets,
such as Java byte code, that have explicit thread information.

The thread functions synthesized by the CAD tools must only use
create, join, mutex, and semaphore primitives. We are currently
extending the CAD tools to support other types of
synchronization, in addition to other communication techniques
such as message passing.

Accelerator instantiation is currently targeted toward applications
using a boss-worker thread model. For applications with many
threads performing different tasks, improved strategies based on
historical profiles may be needed, and remains as future work.

The decompilation techniques are also a potential limitation. If
decompilation does not recover enough high-level information,
the resulting hardware may be inefficient. However, previous
work has shown that decompilation often makes synthesis from a
software binary competitive with high-level synthesis [23][27].

4. OPERATING SYSTEM SUPPORT
To support thread synchronization, the OS API includes all
pthread functions, which are also used by commercial operating
systems such as VxWorks [28]. We plan to also consider other
APIs, such as the task functions from VxWorks.

The OS scheduler handles the scheduling of threads onto both
microprocessors and a set of custom thread accelerators specified
by the schedulable resource list (SRL) shown in Figure 2.

The scheduler maintains a thread queue that stores threads waiting
for processing resources. For the thread at the queue head, the
scheduler checks the SRL to determine what resources are
available and compatible with the thread. The scheduler gives
priority to the fastest resource that is compatible with the thread
function, which is usually an accelerator.

A problem occurs when there are no accelerators for the first
thread in the queue, and no microprocessors are available.
Scheduling algorithms often examine only the head of the queue
to achieve O(1) complexity. For thread warping, there may exist
other threads in the queue that have available accelerators.
However, if the thread at the queue head cannot be scheduled,
then the remaining threads in the queue also cannot be scheduled.
To avoid this problem, the scheduler scans the thread queue until
finding a thread that can be scheduled. This more complex
scheduler has O(n) complexity, where n is the maximum size of
the thread queue. However, the scheduler often avoids the worst

case by not scanning the queue if no resources are available, or if
available resources do not apply to any waiting threads.

The scheduler is non-preemptive for threads executing on
accelerators, and preemptive for software threads. By utilizing
non-preemptive scheduling, the scheduler avoids having to save
FPGA state – a task far more difficult than for software [17]. The
scheduler is invoked anytime a thread is created/completed,
anytime a lock is released, or anytime a software thread is
blocked by a synchronization request.

The scheduler also synchronizes the execution of thread groups in
the TGT, as in Section 3.1.1. Each entry in the TGT consists of a
thread group queue and a maximum size. When an application
creates a thread from a thread group, the scheduler adds that
thread to the appropriate queue in the TGT. When a TGT queue
reaches the maximum specified size, the scheduler moves the
entire queue onto the main thread queue, and schedules the entire
thread group simultaneously. If the number of accelerators for the
corresponding thread function is less than the size of the thread
group, the scheduler moves the queue from the TGT when the
size of the queue matches the number of accelerators.

5. EXPERIMENTS
5.1 Experimental Setup
To evaluate the performance of the framework, we developed a
C++ simulator consisting of approximately 30,000 lines of code,
including the on-chip CAD tools (excluding Xilinx ISE) and the
OS simulation.

The simulator creates a parallel execution graph (PEG) that
represents thread-level parallelism. Each node of the PEG is a
sequential execution block (SEB) – a block that either ends with a
pthread call or represents the end of a thread. PEG edges
represent synchronization between SEBs. For a SEB to be
schedulable, all SEB parents must have finished. Each SEB also
specifies synchronization, such as mutex locks, that must succeed
before the SEB can complete. To generate the PEG, the simulator
uses pthread wrapper functions with knowledge of parent and
children SEB blocks. Using those functions, the simulator creates
a PEG from a single sequential execution of the application.

For each SEB, the simulation determines software and hardware
performance, and synthesis execution time. The simulator
determines software performance using SimpleScalar [3] and
hardware performance using VHDL simulation of the synthesized
accelerator. In the case that SEB performance is data dependent,
one can manually annotate the performance.

After determining performances of each SEB, the simulator uses
the PEG to perform an event-driven simulation of the

architecture. The simulator schedules SEBs to processing
resources, while updating the state of the architecture, OS, and
FPGA as the CAD tools execute. The simulation completes after
scheduling all SEBs.

The simulator currently does not simulate arbitration overhead for
multi-core microprocessor memory accesses, and instead assumes
all cores can simultaneously access memory. Such an assumption
results in optimistic software execution times, therefore the
reported circuit speedups are pessimistic.

The simulator maintains memory coherency by not scheduling
software threads while accelerators are executing, and by flushing
each cache upon accelerator completion. This restriction
simplifies simulation by not requiring simulation of a coherency
protocol. Because this restriction artificially limits parallelism, the
reported circuit speedups are again pessimistic.

5.2 Comparison of Multi-Core Systems and
Thread Warping
We compare multicore architectures consisting of ARM11
microprocessors running at 400 MHz, with an architecture
performing thread warping, consisting of four microprocessors
and a Xilinx Virtex IV XC4VLX15 FPGA, which has the area
equivalent to approximately 36 ARM11 cores. The FPGA runs at
the frequency determined by placement and routing for each set
of accelerators, ranging from 100 to 300 MHz.

To evaluate the framework, we developed multithreaded versions
of image processing benchmarks. Fir is a finite impulse response
filter. Prewitt performs Prewitt edge detection. Linear performs a
linear search. Moravec performs the Moravec algorithm. Wavelet
performs a wavelet transform. Maxfilter outputs the maximum of
a window of pixels. 3DTrans performs 3-dimensional graphic
transformations. We also use an N-body simulation to test longer-
running scientific-computing applications. While an ARM11 is
not typically used for scientific computing, the framework can
easily be extended to high-performance processors.

Figure 3 shows application speedups for multiprocessor systems
and for thread warping (TW) compared to the performance of a 4-
core system. On average, thread warping resulted in a speedup of
130x compared to the 4-core architecture. The geometric mean
was 38x. Thread warping was 11x faster than the 64-core system,
outperforming the 64-core system for all examples except Fir,
Linear, and 3Dtrans. These results for thread warping represent
the performance after creating custom accelerators and do not
represent the initial execution of the application. The initial
execution of the applications would have almost identical
performance as the 4-core system, except for N-body, which
would still have been 8x faster because the original execution

130 502 63 130308

0
10
20
30
40
50

Fir Prewitt Linear Moravec Wavelet Maxfilter 3DTrans N-body Avg. Geo.
Mean

4-uP
8-uP
16-uP
32-uP
64-uP
TW

Figure 3: Speedups of multithreaded applications on multiprocessor systems versus thread warping (TW). The speedups are compared to

the execution time of the 4-microprocessor (uP) system. On average, TW achieved a 130x speedup.

time was 9.4 hours. The synthesis execution times ranged from 22
minutes to 48 minutes, averaging 32 minutes.

Thread warping achieved large speedups for Prewitt, Moravec,
Wavelet, and Maxfilter because those examples have no
dependencies between threads, allowing for most of the
application to be parallelized. Of course, examples exist that are
not amenable to FPGA implementations, such as many desktop
applications, for which thread warping would not currently
achieve speedup. However, for those applications that are
amenable to FPGA implementations, the improvements are
significant.

6. CONCLUSIONS
We introduced a framework for dynamic synthesis of thread
accelerators, or thread warping, which transparently creates
custom FPGA circuits for threads. To enable the technique, we
introduced CAD methods for accelerator synthesis and accelerator
instantiation, and integrated those methods into an architecture
that allows the OS to schedule threads onto both microprocessors
and accelerators. Using an extensive architecture simulator, the
approach resulted in overall application speedups ranging from 4x
for an FIR filter to 502x for a wavelet transform.

Although some of the performance gains could be obtained using
multiprocessing platforms with more microprocessors instead of
an FPGA, thread warping achieves speedups across a wider range
of applications by parallelizing applications at finer-granularities
than just the thread level. Furthermore, thread warping utilizes
FPGAs, which may be lower cost than multiprocessing platforms
due to FPGAs’ widespread usage in a variety of systems yielding
economy of scale.

7. ACKNOWLEDGMENTS
This work was funded in part by the National Science Foundation
(CNS-0614957) and the Semiconductor Research Corporation
(2005-HJ-1331).

8. REFERENCES
[1] Amerson, R., Carter, R., Culbertson, W., Kuekes, P., Snider, G., and

Albertson, L. Plasma: an FPGA for million gate systems. In
Proceedings of Int. Symp. on Field Programmable Gate Arrays
(FPGA), 1996, 10-16.

[2] Andrews, D., Niehaus, D., and Ashenden, P. Programming models
for hybrid CPU/FPGA chips. IEEE Computer, 37, 1 (2004), 118-
120.

[3] Burger, D. and Austin, T. The simplescalar tool set, version 2.0.
SIGARCH Computer Architecture News, 25, 3 (1997), 13-35.

[4] Cifuentes, C. Reverse Compilation Techniques. PhD Thesis,
Queensland University of Technology, 1994.

[5] Cray XD1. http://www.cray.com/products/xd1, 2005.
[6] Dellson, A., Sandberg, G., and Möhl, S. Turning FPGAs into

Supercomputers. Cray User Group, 2006.
[7] Eles, P., Peng, Z., Kuchchinski, K., and Doboli, A. System level

hardware/software partitioning based on simulated annealing and
tabu search. Journal on Design Automation for Embedded Systems
(DAES), Springer, 2, 1 (1997), 5-32.

[8] Fin, A., Fummi, F., and Signoretto, M. SystemC: a homogenous
environment to test embedded systems. In Proceedings of Int.
Workshop on Hardware/Software Codesign (CODES), 2001, 17-22.

[9] Grimpe, E. and Oppenheimer, F. Extending the SystemC synthesis
subset by object oriented features. In Proceedings of Int. Conf. on

Hardware/Software Codesign and System Synthesis (CODES/ISSS),
2003, 25-30.

[10] Guo, Z., Buyukkurt, A.B., and Najjar, W. Input data reuse in
compiling window operations onto reconfigurable hardware. In
Proceedings of Symposium on Languages, Compilers and Tools for
Embedded Systems (LCTES), 2004, 249-256.

[11] Gupta, S., Dutt, N., Gupta, R., and Nicolau, A. SPARK : a high-level
synthesis framework for applying parallelizing compiler
transformations. In Proceedings of Int. Conf. on VLSI Design, 2003.

[12] Hill, M., Larus, J., Lebeck, A., Talluri, M., and Wood, D. Wisconsin
architectural research tool set. SIGARCH Computer Architecture
News. 21, 4 (1993).

[13] IBM. The Cell Architecture. http://domino.research.ibm.com, 2006.
[14] Schleupen, K., Lekuch, S., Mannion, R., Guo, Z., Najjar, W., and

Vahid, F. Dynamic partial FPGA reconfiguration in a prototype
microprocessor system. In Proceedings of Int. Conf. on Field
Programmable Logic And Applications, 2007.

[15] Intel Quad-Core Xeon. http://www.intel.com , 2007.
[16] Jung, H. and Ha, S. Hardware synthesis from coarse-grained

dataflow specification for fast hw/sw cosynthesis. In Proceedings of
Int. Conf. on Hardware/Software Codesign and System Synthesis
(CODES/ISSS), 2004, 24-29.

[17] Koch, D., Haubelt, C., and Teich, J. Efficient hardware
checkpointing: concepts, overhead analysis, and implementation. In
Proceedings of Int. Symp. on Field Programmable Gate Arrays
(FPGA), 2007, 188-196.

[18] M. LaPedus. Intel Tips Teraflops Programmable Processor. EE
Times, September 2006.

[19] Lu, J., Chen, H., Yew, P., and Hsu, W. Design and implementation
of a lightweight dynamic optimization system. Journal of
Instruction-Level Parallelism, 6 (Jun 2004), 1-24.

[20] Ludwig, S. Fast Hardware Synthesis Tools and a Reconfigurable
Coprocessor. Ph.D. Thesis, ETH Zurich, 2005.

[21] Lysecky, R., Stitt, G., and Vahid, F. Warp processors. ACM
Transactions on Design Automation of Electronic Systems
(TODAES), 11, 3 (2006), 659-681.

[22] Lysecky, R., Vahid, F., and Tan, S. A study of the scalability of on-
chip routing for just-in-time FPGA compilation. In Proceedings of
IEEE Symp. on Field-Programmable Custom Computing Machines
(FCCM), 2005, 57-62.

[23] Mittal, G., Zaretsky, D., Tang, X., and Banerjee, P. Automatic
translation of software binaries onto FPGAs. In Proceedings of ACM
Design Automation Conference (DAC), 2004, 389-394.

[24] De Micheli, G. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[25] Rakhmatov, D. and Vrudhula, S. Hardware-software bipartitioning
for dynamically reconfigurable systems. In Proceedings of Int.
Workshop on Hardware/Software Co-Design (CODES), 2002, 145-
150.

[26] SGI Altix. http://www.sgi.com/products/servers/altix/
[27] Stitt, G. and Vahid, F. New decompilation techniques for binary-

level co-processor generation. In Proceedings of IEEE/ACM Int.
Conf. on Computer-Aided Design (ICCAD), 2005, 547-554.

[28] VxWorks RTOS. http://www.windriver.com/vxworks/, 2007.
[29] Xilinx Virtex II Pro, http://www.xilinx.com, 2006.
[30] Xilinx Virtex IV, http://www.xilinx.com, 2006.
[31] Zhang, W., Calder, B., and Tullsen, D. An event-driven

multithreaded dynamic optimization framework. In Proceedings of
Int. Conf. on Parallel Architectures and Compilation Techniques
(PACT), 2005, 87-98.

