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ABSTRACT 
We present a dynamic optimization technique, thread warping, 
that uses a single processor on a multiprocessor system to 
dynamically synthesize threads into custom accelerator circuits on 
FPGAs (field-programmable gate arrays). Building on dynamic 
synthesis for single-processor single-thread systems, known as 
warp processing, thread warping improves performances of 
multiprocessor systems by speeding up individual threads and by 
allowing more threads to execute concurrently. Furthermore, 
thread warping maintains the important separation of function 
from architecture, enabling portability of applications to 
architectures with different quantities of microprocessors and 
FPGA—an advantage not shared by static compilation/synthesis 
approaches. We introduce a framework of architecture, CAD 
tools, and operating system that together support thread warping. 
We summarize experiments on an extensive architectural 
simulation framework we developed, showing application 
speedups of 4x to 502x, averaging 130x compared to a 
multiprocessor system having four ARM11 microprocessors, for 
eight benchmark applications. Even compared to a 64-processor 
system, thread warping achieves 11x speedup.   

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems.  

General Terms 
Performance, Design. 

Keywords 
Synthesis, FPGA, threads, multi-core, dynamic synthesis, warp 
processing, thread warping, just-in-time compilation. 

1. INTRODUCTION 
Modern processing architectures are increasingly multi-core, 
containing multiple processors (cores) on a single chip [13][15], 
even near 100 [18]. Multi-core devices are commonly connected 
on boards or backplanes to form even larger multiprocessor 
systems [13][26]. The mainstreaming of multiprocessor 

architectures increases the number of applications written using 
multiple threads, which can better utilize multi-core parallelism 
compared to single-threaded applications.  

Field-programmable gate array (FPGA) devices are being 
incorporated into many multiprocessing systems, by 
multiprocessor vendors [5][14][26], FPGA vendors [29][30], and 
third-party vendors [6]. Such incorporation is due to FPGAs 
providing several-order-of-magnitude speedups for many 
applications ranging from embedded systems [11][21][25] to 
supercomputing [6]. Yet, a widely recognized barrier to wider 
FPGA utilization is the challenge of programming mixed 
multiprocessor/FPGA systems, with extensive language and tool 
research seeking to overcome the barrier [8][9][11][16][21].  

Meanwhile, multiprocessor architecture researchers have 
proposed a paradigm in which one processor performs 
optimizations that benefit other processors [19][31]. Such 
optimizations might include detecting and re-compiling (with 
high optimization) critical code regions, just-in-time compiling 
critical regions to a processor’s native instruction set (e.g., VLIW 
rather than x86), scheduling threads, scaling voltages, etc. 
Separately, we previously developed warp processing, which uses 
an on-chip processor to dynamically remap critical code regions 
from processor instructions to FPGA circuits [21] using runtime 
synthesis. That work showed that aggressive decompilation can 
often recover enough high-level information (e.g., loop, arrays, 
subroutines) from a binary to yield synthesized circuits 
competitive with those synthesized from source code.  

We combine these concepts, by proposing a new dynamic 
multiprocessor optimization technique, thread warping, that uses 
one processor to synthesize threads into circuits on FPGAs. 
Despite the fact that modern synthesis tools have long execution 
times, we show that order-of-magnitude application speedups can 
be obtained for numerous compute-intensive benchmark 
applications. Our contribution consists of integrating existing and 
new CAD techniques into a framework capable of dynamically 
synthesizing thread accelerators, allowing an operating system to 
schedule threads onto both microprocessors and custom circuits. 

This paper is organized as follows. Section 2 provides a technique 
overview. Section 3 describes on-chip CAD tools for synthesizing 
thread accelerators. Section 4 discusses operating system support. 
Section 5 presents experimental results. 

2. OVERVIEW 
Figure 1(a) overviews thread warping for a multithreaded 
application, which initially creates threads to execute function f(), 
as shown in step 1 of the figure. Because the number of threads 
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exceeds the number of processors, the operating system places 
threads in a queue as they await an available processor, as shown 
in step 2. 

Our framework monitors this queue, analyzes waiting threads, and 
utilizes on-chip CAD tools to create custom accelerator circuits 
for the f() function (step 3). After some time (32 minutes using 
existing commercial synthesis tools for our benchmark set), the 
CAD tools finish mapping the accelerators onto the FPGA. 
Assuming the application has not finished, as in Figure 1(b), the 
operating system (OS) begins scheduling threads onto both FPGA 
accelerators and microprocessor cores (step 4), resulting in a 
speedup for a single execution. Single-execution speedups are 
possible for long-running applications from domains such as 
scientific computing. 

Of course, for many applications, 32 minutes of synthesis may 
exceed the application’s execution time. For shorter applications, 
such as embedded systems, the framework caches accelerators in 
a non-volatile library for future executions, thus amortizing the 
synthesis time over the repeated executions, as in Figure 1(c), 
resulting in an average speedup of 130x compared to four ARM11 
microprocessors for our benchmarks. Ultra-efficient synthesis 
techniques [20][21], possibly coupled with fast, synthesis-oriented 
FPGAs [1], may help make single-execution speedups possible 
for more applications.  

Although the architecture in Figure 1 utilizes four cores and an 
on-chip FPGA, we could extend thread warping to handle any 
number of cores, and off-chip FPGAs, with minimal changes to 
the CAD tools and OS.  

Instead of using thread warping, a designer could utilize standard 
static synthesis techniques (e.g., [11]) at compile time to create 
custom accelerators for threads, using specialized tools and/or 
languages. Although a static approach is an excellent technical 
solution, many software developers may resist such an approach 
due to the requirement of using a non-standard software tool flow. 
Thread warping hides the FPGA by dynamically synthesizing 
accelerators, allowing software developers to take advantage of 
the performance improvements of custom circuits without any 

changes to tool flow – just as multithreaded programs make use of 
more processors without rewriting or recompiling code. In 
addition, thread warping adapts the system to changing thread 
behavior, and different mixes of resident applications. For 
example, thread warping can potentially create different 
accelerator versions depending on the amount of available FPGA 
at different points during execution. 

3. ON-CHIP CAD TOOLS 
We define the following terms. A thread creator is a function that 
contains the API (application programming interface) call that 
creates a thread. A thread function is the function that a thread 
executes. A thread is the unit of execution that the OS schedules. 
A thread group is a collection of threads, created from the same 
instruction address, that share input data.  

Figure 2(a) shows the on-chip CAD tool flow used by thread 
warping. Initially, queue analysis analyzes the thread queue to 
determine the union of waiting thread functions and a set of 
thread counts representing the occurrences of each thread function 
in the queue. Next, if accelerators do not already exist for the 
waiting thread functions, accelerator synthesis creates a custom 
accelerator circuit for each thread function and stores the 
accelerator in the accelerator library. When threads cannot be 
implemented entirely as FPGA circuits, accelerator synthesis may 
create an accelerator that acts as a coprocessor for one of the main 
microprocessors. To communicate between the microprocessor 
and accelerator, accelerator synthesis creates an updated software 
binary. It also creates a thread group table (TGT) that specifies 
all thread groups. After accelerator synthesis completes, 
accelerator instantiation determines the number of accelerators to 
place in the FPGA for each thread function. Accelerator 
instantiation outputs a circuit, which the place & route tool 
converts to an FPGA bitstream. Accelerator instantiation also 
creates a schedulable resource list (SRL) that informs the OS of 
available processing resources. 

The OS invokes the on-chip CAD tools when the thread queue 
reaches a predefined size, and also periodically to adapt the 
system to changes. If new thread functions are present, then 

 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 1: Thread warping: (a) architecture and overview, (b) usage when application runtimes greatly exceed synthesis times, as for 
scientific computations that run for hours or days, (c) usage when applications repeat, in which case synthesized results can be stored in a 

library and retrieved when needed. 
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accelerator synthesis considers creating new accelerators. 
Alternatively, if thread counts change, accelerator instantiation 
changes the types/amount of accelerators in the FPGA. 

The current on-chip CAD tools support ARM11 binaries 
compiled with pthread functions calls. Pthread support is provided 
by the OS and is discussed in Section 4.  

The CAD tools use numerous heuristics, but space does not allow 
detailed discussion of each. Key details regarding the novel 
techniques for accelerator synthesis and accelerator instantiation 
are discussed in the following sections. 

3.1 Accelerator Synthesis 
Figure 2(b) illustrates the tool flow of accelerator synthesis, 
which initially uses decompilation techniques [4], drawn from 
previous work in binary synthesis [27], to recover high-level 
constructs such as functions, function parameters, loops, if 
statements, arrays, etc. Hw/Sw partitioning analyzes decompiled 
thread functions, using previous techniques (e.g., [7]), to 
determine which regions to implement as circuits. Next, memory 
access synchronization analyzes thread functions, detects threads 
with similar memory access patterns, and combines those threads 
into thread groups that share memory channels and have 
synchronized execution. High-level synthesis converts the 
decompiled representation of the thread function (or other region) 
into a custom circuit, represented as a netlist. In addition, the 
Binary updater optionally modifies the original software binary to 
communicate with accelerators, in the case where an entire thread 
function is not implemented on the FPGA. We implement the 
binary updater using techniques from WARTS [12]. When 
implementing accelerators for entire thread functions, accelerator 
synthesis does not modify the thread binary. 

3.1.1 Memory access synchronization 
Inter-thread communication is a common bottleneck of 
multithreaded applications, and is often implemented using shared 
memory. This bottleneck poses a challenge for FPGA circuits, 
which may access shared memory using a DMA with a few 
channels. Thread warping further complicates memory accesses 
by requiring simultaneous access for possibly dozens of thread 
accelerators. Limited memory bandwidth restricts the number of 

DMA channels, forcing accelerators to multiplex data over a 
shared channel, reducing performance. 

We observed that for some parallel applications, the required 
number of channels could be reduced because multiple threads 
may read the same data from memory. In this situation, memory 
access synchronization (MAS) can potentially combine memory 
accesses from multiple accelerators onto a single channel, and use 
a single read to service many accelerators. We refer to this 
situation as a “combinable” memory access.  

To support combinable memory accesses, we developed MAS 
techniques to analyze memory access patterns of thread functions 
to detect overlapping accesses. MAS detects overlapping regions 
by determining all fixed-address memory reads in the control/data 
flow graph of each thread function. To increase the number of 
fixed-address reads, MAS unrolls loops to generate fixed-address 
reads for array calculations. MAS also treats stack-relative 
accesses as combinable for threads that have the same input 
parameters because in this case, the stack operations refer to the 
same data. MAS annotates combinable accesses, allowing high-
level synthesis to combine data onto a single channel. MAS 
assigns all remaining non-fixed accesses onto a separate channel 
that multiplexes the data using different base addresses. 

To implement a combined memory access, the OS synchronizes 
the execution of all involved accelerators. To achieve this 
synchronization, MAS analyzes thread creators and detects loops 
that create threads with combinable accesses, called thread 
groups. MAS determines the size of a thread group based on the 
number of threads created from a particular instruction address. 
Finally, MAS stores the thread group into the thread group table 
(TGT). The OS utilizes the TGT to synchronize all threads in the 
thread group, as discussed in Section 4. 

3.1.2 High-level synthesis 
To perform high-level synthesis, we use existing techniques for 
optimization, scheduling, resource allocation, and binding [24]. 
We also utilize smart buffers [10] to reduce memory accesses and 
improve pipeline throughput. 

To support synthesis of thread synchronization, synthesis initially 
searches the control/data flow graph of each thread function to 
identify unsupported synchronization primitives. Our synthesis 

 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 2: (a) On-chip CAD tool flow, which initially analyzes the thread queue and creates custom accelerators for waiting threads using 
the illustrated (b) accelerator synthesis tool flow. 
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tools currently support pthread create, join, mutex, and semaphore 
functions. If a thread function contains other calls, the OS will 
always schedule corresponding threads onto microprocessors. 
Software threads can utilize the entire pthread API. 

For each semaphore, synthesis creates a controller that requests a 
semaphore operation from the OS and waits for the operation to 
complete. The semaphore-operation request triggers an interrupt, 
allowing the OS to service the request in an interrupt service 
routine. If an accelerator requests a lock for a locked semaphore, 
the OS adds the request to a synchronization queue, checked 
when another thread unlocks the semaphore. To handle 
synchronization requests from multiple accelerators, the OS uses 
an arbiter generated during accelerator instantiation. We 
considered hardware mutexes [2], but they would have required 
significant changes to the software binary.   

Synthesis synchronizes thread groups by using a memory access 
scheduler circuit that initially time multiplexes all uncombined 
accesses over a single DMA channel and then triggers a combined 
access that delivers data to all involved accelerators. 

The CAD tools use Xilinx ISE for register-transfer level 
synthesis. We currently execute ISE on a 3 GHz Pentium IV 
because no ARM11 version exists. However, our results are based 
on estimated ARM11 synthesis execution times, which we 
obtained from a comparison of runtimes on two similar systems in 
previous work [21]. In this paper, we focus mostly on recurring 
speedups, therefore the accuracy of the synthesis time estimates 
does not affect the results, and is intended to give an idea of how 
long the tools must execute before accelerators are available. 

3.2 Accelerator Instantiation 
After accelerator synthesis completes, accelerator instantiation 
determines the number of each type of accelerator to include in 
the FPGA for best performance. Some applications may benefit 
from using many accelerators for a single thread function, while 
others may benefit from a small number of accelerators for 
different thread functions. Furthermore, for some applications, the 
requirements may change during execution.  

We map the problem to the 0-1 knapsack problem, where each 
item to be placed in the knapsack is an accelerator and the FPGA 
area represents the knapsack capacity. We map the area of each 
accelerator to the weight of each item. We define the profit of 
each accelerator as the product of the thread count percentage and 
the thread function speedup, defined as follows. Thread count 
percentage is the number of thread function occurrences in the 
queue divided by total queue size. Thread function speedup is the 
software performance of the thread divided by the accelerator 
performance. We then use a greedy knapsack heuristic with 
O(nlgn) complexity to generate a solution. 

Accelerator instantiation also synthesizes an appropriate arbiter 
(Section 3.1.2) to handle the synchronization requests for each 
accelerator. Finally, accelerator instantiation passes the netlist for 
all accelerators to placement and routing to generate a bitfile for 
the FPGA. In addition, accelerator instantiation updates the 
schedulable resource list with the new resource amounts. 

3.3 Placement and Routing 
We use Xilinx ISE, running on a Pentium IV, for placement and 
routing, and again estimate ARM11 execution times as discussed 

in Section 3.1.2. Alternatively, because existing commercial tools 
were not designed for fast dynamic synthesis, we could use 
specialized placement and routing techniques designed for fast 
FPGA mapping [20] or just-in-time (JIT) FPGA compilation [22], 
which reduce placement and routing times by 10x to 46x. 
Specialized FPGAs fabrics have also been introduced to enable 
fast placement and routing [1].  

After placement and routing, the CAD tools store the bitfile in the 
accelerator library, allowing all future executions to immediately 
utilize the accelerators.   

3.4 Limitations 
The original code must use the pthread API. Ideally, the approach 
would support any thread API by detecting use of threads in the 
binary during execution. However, such detection is an open 
problem. Alternatively, the technique could use instruction sets, 
such as Java byte code, that have explicit thread information. 

The thread functions synthesized by the CAD tools must only use 
create, join, mutex, and semaphore primitives. We are currently 
extending the CAD tools to support other types of 
synchronization, in addition to other communication techniques 
such as message passing. 

Accelerator instantiation is currently targeted toward applications 
using a boss-worker thread model. For applications with many 
threads performing different tasks, improved strategies based on 
historical profiles may be needed, and remains as future work. 

The decompilation techniques are also a potential limitation. If 
decompilation does not recover enough high-level information, 
the resulting hardware may be inefficient. However, previous 
work has shown that decompilation often makes synthesis from a 
software binary competitive with high-level synthesis [23][27]. 

4. OPERATING SYSTEM SUPPORT 
To support thread synchronization, the OS API includes all 
pthread functions, which are also used by commercial operating 
systems such as VxWorks [28]. We plan to also consider other 
APIs, such as the task functions from VxWorks. 

The OS scheduler handles the scheduling of threads onto both 
microprocessors and a set of custom thread accelerators specified 
by the schedulable resource list (SRL) shown in Figure 2.  

The scheduler maintains a thread queue that stores threads waiting 
for processing resources. For the thread at the queue head, the 
scheduler checks the SRL to determine what resources are 
available and compatible with the thread. The scheduler gives 
priority to the fastest resource that is compatible with the thread 
function, which is usually an accelerator. 

A problem occurs when there are no accelerators for the first 
thread in the queue, and no microprocessors are available. 
Scheduling algorithms often examine only the head of the queue 
to achieve O(1) complexity. For thread warping, there may exist 
other threads in the queue that have available accelerators. 
However, if the thread at the queue head cannot be scheduled, 
then the remaining threads in the queue also cannot be scheduled. 
To avoid this problem, the scheduler scans the thread queue until 
finding a thread that can be scheduled. This more complex 
scheduler has O(n) complexity, where n is the maximum size of 
the thread queue. However, the scheduler often avoids the worst 



case by not scanning the queue if no resources are available, or if 
available resources do not apply to any waiting threads. 

The scheduler is non-preemptive for threads executing on 
accelerators, and preemptive for software threads. By utilizing 
non-preemptive scheduling, the scheduler avoids having to save 
FPGA state – a task far more difficult than for software [17]. The 
scheduler is invoked anytime a thread is created/completed, 
anytime a lock is released, or anytime a software thread is 
blocked by a synchronization request.  

The scheduler also synchronizes the execution of thread groups in 
the TGT, as in Section 3.1.1. Each entry in the TGT consists of a 
thread group queue and a maximum size. When an application 
creates a thread from a thread group, the scheduler adds that 
thread to the appropriate queue in the TGT. When a TGT queue 
reaches the maximum specified size, the scheduler moves the 
entire queue onto the main thread queue, and schedules the entire 
thread group simultaneously. If the number of accelerators for the 
corresponding thread function is less than the size of the thread 
group, the scheduler moves the queue from the TGT when the 
size of the queue matches the number of accelerators. 

5. EXPERIMENTS 
5.1 Experimental Setup 
To evaluate the performance of the framework, we developed a 
C++ simulator consisting of approximately 30,000 lines of code, 
including the on-chip CAD tools (excluding Xilinx ISE) and the 
OS simulation. 

The simulator creates a parallel execution graph (PEG) that 
represents thread-level parallelism. Each node of the PEG is a 
sequential execution block (SEB) – a block that either ends with a 
pthread call or represents the end of a thread. PEG edges 
represent synchronization between SEBs. For a SEB to be 
schedulable, all SEB parents must have finished. Each SEB also 
specifies synchronization, such as mutex locks, that must succeed 
before the SEB can complete. To generate the PEG, the simulator 
uses pthread wrapper functions with knowledge of parent and 
children SEB blocks. Using those functions, the simulator creates 
a PEG from a single sequential execution of the application.  

For each SEB, the simulation determines software and hardware 
performance, and synthesis execution time. The simulator 
determines software performance using SimpleScalar [3] and 
hardware performance using VHDL simulation of the synthesized 
accelerator. In the case that SEB performance is data dependent, 
one can manually annotate the performance. 

After determining performances of each SEB, the simulator uses 
the PEG to perform an event-driven simulation of the 

architecture. The simulator schedules SEBs to processing 
resources, while updating the state of the architecture, OS, and 
FPGA as the CAD tools execute. The simulation completes after 
scheduling all SEBs. 

The simulator currently does not simulate arbitration overhead for 
multi-core microprocessor memory accesses, and instead assumes 
all cores can simultaneously access memory. Such an assumption 
results in optimistic software execution times, therefore the 
reported circuit speedups are pessimistic. 

The simulator maintains memory coherency by not scheduling 
software threads while accelerators are executing, and by flushing 
each cache upon accelerator completion. This restriction 
simplifies simulation by not requiring simulation of a coherency 
protocol. Because this restriction artificially limits parallelism, the 
reported circuit speedups are again pessimistic. 

5.2 Comparison of Multi-Core Systems and 
Thread Warping 
We compare multicore architectures consisting of ARM11 
microprocessors running at 400 MHz, with an architecture 
performing thread warping, consisting of four microprocessors 
and a Xilinx Virtex IV XC4VLX15 FPGA, which has the area 
equivalent to approximately 36 ARM11 cores. The FPGA runs at 
the frequency determined by placement and routing for each set 
of accelerators, ranging from 100 to 300 MHz.  

To evaluate the framework, we developed multithreaded versions 
of image processing benchmarks. Fir is a finite impulse response 
filter. Prewitt performs Prewitt edge detection. Linear performs a 
linear search. Moravec performs the Moravec algorithm. Wavelet 
performs a wavelet transform. Maxfilter outputs the maximum of 
a window of pixels. 3DTrans performs 3-dimensional graphic 
transformations. We also use an N-body simulation to test longer-
running scientific-computing applications. While an ARM11 is 
not typically used for scientific computing, the framework can 
easily be extended to high-performance processors. 

Figure 3 shows application speedups for multiprocessor systems 
and for thread warping (TW) compared to the performance of a 4-
core system. On average, thread warping resulted in a speedup of 
130x compared to the 4-core architecture. The geometric mean 
was 38x. Thread warping was 11x faster than the 64-core system, 
outperforming the 64-core system for all examples except Fir, 
Linear, and 3Dtrans. These results for thread warping represent 
the performance after creating custom accelerators and do not 
represent the initial execution of the application. The initial 
execution of the applications would have almost identical 
performance as the 4-core system, except for N-body, which 
would still have been 8x faster because the original execution 
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Figure 3: Speedups of multithreaded applications on multiprocessor systems versus thread warping (TW). The speedups are compared to 

the execution time of the 4-microprocessor (uP) system. On average, TW achieved a 130x speedup. 



time was 9.4 hours. The synthesis execution times ranged from 22 
minutes to 48 minutes, averaging 32 minutes. 

Thread warping achieved large speedups for Prewitt, Moravec, 
Wavelet, and Maxfilter because those examples have no 
dependencies between threads, allowing for most of the 
application to be parallelized. Of course, examples exist that are 
not amenable to FPGA implementations, such as many desktop 
applications, for which thread warping would not currently 
achieve speedup. However, for those applications that are 
amenable to FPGA implementations, the improvements are 
significant. 

6. CONCLUSIONS 
We introduced a framework for dynamic synthesis of thread 
accelerators, or thread warping, which transparently creates 
custom FPGA circuits for threads. To enable the technique, we 
introduced CAD methods for accelerator synthesis and accelerator 
instantiation, and integrated those methods into an architecture 
that allows the OS to schedule threads onto both microprocessors 
and accelerators. Using an extensive architecture simulator, the 
approach resulted in overall application speedups ranging from 4x 
for an FIR filter to 502x for a wavelet transform.  

Although some of the performance gains could be obtained using 
multiprocessing platforms with more microprocessors instead of 
an FPGA, thread warping achieves speedups across a wider range 
of applications by parallelizing applications at finer-granularities 
than just the thread level. Furthermore, thread warping utilizes 
FPGAs, which may be lower cost than multiprocessing platforms 
due to FPGAs’ widespread usage in a variety of systems yielding 
economy of scale. 
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