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Abstract 

Recent advances in Xilinx’s FPGA devices and 

design tools significantly improve the practicality of 

incorporating dynamic partial reconfiguration into 

high-performance embedded computing systems.  By 

taking advantage of internal configuration access 

ports, Xilinx FPGAs are capable of in-situ partial 

reconfiguration without the need for external 

components, a technique defined as self-reconfigura-

tion.  However, proper planning and a significant 

amount of manual floorplanning are required to 

effectively leverage partial reconfiguration and truly 

enhance the capabilities of a system and/or achieve 

cost savings.  This paper proposes and analyzes partial 

reconfiguration design methodologies to enable self-

reconfiguration using Virtex-4 and Virtex-5 FPGAs. 

1. Introduction 

SRAM-based FPGAs are reprogrammable devices, 

with the ability to modify their hardware architecture 

easily and at any time.  Partial reconfiguration (PR) 

enhances this paradigm by reconfiguring only a portion 

of the chip’s configuration memory, allowing the user 

to load and unload user-defined hardware modules 

without interrupting or resetting the rest of the device.  

Reconfiguration time is decreased using PR, and 

bitstream communication and/or storage costs can be 

reduced.  Configuration memory scrubbing (i.e. 

checking for errors and correcting them, if possible) is 

made possible by PR.  Despite these advantages, 

commercial interest in PR has not significantly 

materialized due mainly to a lack of supporting 

software tools and merciless design flows.  

Nevertheless, the powerful potential of this level of 

reconfigurability has been recognized by the research 

community, and different conceptual approaches have 

been developed to incorporate PR into embedded 

systems using Xilinx FPGAs [1-9]. 

Earlier Virtex devices, up to and including the 

Virtex-II Pro family, as well as their PR design tools, 

are constrained by critical restrictions on PR designs.  

For example, entire columns of the FPGAs have to be 

reconfigured.  Also, under older tool flows, static 

signals cannot easily pass through a partially 

reconfigurable region.  Ultimately these constraints 

make PR design with these older FPGA devices and 

tools too impractical to be useful in a wide variety of 

applications.  However, with the release of the Virtex-4 

and Virtex-5 series of FPGAs and their tile-based 

frame architectures, PR design constraints are greatly 

relaxed.  With the emergence of the lucrative software-

defined radio (SDR) market, Xilinx took the initiative 

to engineer a simplified PR design flow [10] within 

their standard FPGA development environment.  This 

new design flow eliminates or automates many of the 

burdensome requirements put in place by the previous 

method. 

Unfortunately, due to the relatively recent 

unveiling of Xilinx’s new PR design flow, it is still in 

an early-release phase and unavailable to the general 

public.  As a result, there exists a vacuum in academic 

research and results exploring partially reconfigurable 

systems using the latest Virtex FPGAs.  By combining 

our PR design experience with strategies and key 

issues identified in literature, we seek to define design 

methodologies and “best practices” for incorporating 

dynamic self-reconfiguration into a variety of 

reconfigurable computing (RC) systems based upon 

Virtex-4 and Virtex-5 devices. 

2. Related Research 

In their early PR design approach, Ullmann et al. 

proposed a partially reconfigurable architecture for 

automotive systems, based on Virtex-II FPGAs [1].  

Their FPGA architecture includes a MicroBlaze soft-

core processor, a static internal configuration access 

port (ICAP) controller, and four user-definable, 

partially reconfigurable regions (PRRs) that span the 

entire height of the device.  In addition to describing 



the architecture of the PR device, they discuss run-time 

resource management, such as keeping track of PR 

module locations in memory and preservation of state 

information when swapping reconfigurable modules, 

both of which are important facets of dynamic self-

reconfiguration.  A follow-up paper [2] explores the 

same PR architecture in more detail, focusing on a 

novel slice-based “bus macro” component.  Bus 

macros provide anchor points that allow signals to 

enter and leave PR regions at known locations.  

Original bus macros were based on tri-state elements 

(TBUFs), which, if malfunctioning or used incorrectly, 

could cause a short circuit within the FPGA and 

potentially destroy it.  Xilinx has since eliminated 

TBUFs in Virtex-4 devices and beyond and instead has 

incorporated slice-based bus macros into the PR design 

flow. 

Hubner et al. extended the previous work with the 

MicroBlaze-based PR architecture by proposing a 

technique to avoid the requirement of Virtex-II FPGAs 

to reconfigure entire columns [3].  Their technique was 

very involved, however, requiring the user to perform a 

read-modify-write process on configuration memory 

using Xilinx’s JBits tool (as opposed to simply loading 

a new partial bitstream).  While improving the 

flexibility of PR on the earlier chips, the main 

drawback to this approach is large reconfiguration 

times, on the order of seconds, which may be an 

intolerable reconfiguration delay in tomorrow’s high-

performance systems. 

Wichman et al. proposed their own self-

reconfiguration methodology [4] using Virtex-II Pro 

FPGAs.  Their approach inspired our initial approach 

to PR design with Virtex-4 FPGAs [5], which is to 

statically floorplan the entire FPGA at design time, 

breaking the overall  FPGA up into pre-defined PRRs.  

Wichman suggests that each module that is to be 

executed on the FPGA should be placed and routed for 

each region of the chip, so that multiple versions of 

each module exist (one for each PRR on the FPGA).  

They indicate that using external components to 

perform reconfiguration of an FPGA can create a 

single point of failure, and introduces the risk of losing 

the ability to reprogram the FPGA in the event of a 

failure of the reconfiguration controller.  Because of 

this risk, a recommendation is made to use the ICAP as 

described in [1] for self-reconfiguration. 

Research by Sedcole et al. also proposed a method 

to circumvent the full-column reconfiguration 

requirement of the earlier Virtex FPGAs [6].  Their 

technique addresses the difficulty in routing static lines 

through partially reconfigurable columns, however 

their solution requires an additional step beyond place-

and-route (realized through the implementation of a 

custom tool) since, at the time of their work, there was 

no mechanism to specify the required constraints in 

Xilinx’s design flow.  They also used a read-modify-

write approach to performing the actual 

reconfiguration, similar to that used in [3]. 

Partial reconfiguration can also be leveraged to 

improve the reliability and lifetime of FPGA devices, 

as described by Emmert et al. [7].  They proposed a 

mechanism called Self-Testing AReas (STARs), a 

process that runs in the background and scans the 

FPGA in small square areas looking for permanent 

faults.  Upon discovery of a faulty area of the chip, 

their mechanism reconfigures the design to simply 

“avoid” the bad section.  They extended this research 

in [8] by considering enhanced capabilities such as 

partial use of a faulty region, as well as optimizing 

spare region allocation so as to minimize wasted 

resources and impact on system performance during 

normal operation.  Other research discusses the use of 

PR for system-level fault tolerance on a more 

conceptual level, where the PR design flow is analyzed 

in detail and key challenges and design tradeoffs are 

highlighted [9].  An important observation is the need 

for and value of automated design tools, which help 

insulate the designer from the low-level details of a PR 

design and optimize the performance and efficiency of 

partially reconfigurable FPGA architectures. 

3. Understanding the PR Design Space 

Generally speaking, FPGAs are used to implement 

a wide variety of hardware architectures.  Before 

proposing or suggesting any particular PR design 

strategy, it is important to consider the type of system 

or platform that is being designed.  Both the device-

level and system-level architecture of a reconfigurable 

computing (RC) platform will directly impact the 

connectivity of PR-specific mechanisms with other 

modules or system components.  Another issue to 

consider is whether or not every potential PR module is 

defined prior to system implementation.  If every 

application, or version of a specific application, that 

will be executed on a particular system is known at 

design time, then engineers can take advantage of this 

information to help optimize interfaces as well as 

determine resource-efficient FPGA floorplans.  

However, it is often conceivable that an FPGA system 

or board may be designed with the intention to re-use it 

for multiple missions in the future, or to upgrade 

components as improved or updated versions emerge.  

To clarify these concepts, we have defined three 

system classes as well as two different system design 

scenarios, which describe and refer to common use-

cases of FPGAs in contemporary systems. 

The three defined system classes include: (a) 

System-on-Chip (SoC), (b) coprocessor, and (c) stand-

alone, as illustrated in Figure 1.  FPGAs-based designs 

for SoC are characterized by the presence and use of



 
Figure 1.  Example illustrations of common FPGA use-cases: (a) System-on-Chip,  

(b) coprocessor, and (c) stand-alone. 
 

on-chip, hard-core PowerPC processors or soft-core 

MicroBlaze processors, as well as an on-chip bus 

interconnect such as IBM’s CoreConnect for 

interfacing various on- and off-chip peripherals with 

each other and the software processor(s). 

FPGAs used as coprocessors are characterized by 

an association or pairing with some external software 

processor, where the software processor serves as a 

master and the FPGA coprocessor serves as a worker, 

typically a high-performance computational offload 

engine (or alternately, perhaps as an intelligent network 

controller).  The internal architecture of a coprocessor-

class FPGA can be more customized than the SoC-

class FPGA, and typically the internal control logic is 

relatively simple.  Good examples of coprocessor-class 

FPGA systems are PCI-based FPGA cards that fit into 

slots on a typical workstation motherboard, or high-

performance computing (HPC) systems such as 

XtremeData’s XD1000 platform, which pairs an AMD 

Opteron with an FPGA by housing the FPGA in one of 

the two HyperTransport-connected Opteron sockets of 

a dual-processor motherboard. 

SoC- and coprocessor-class systems both have the 

advantage of being able to rely upon software to help 

manage and control the FPGA.  The third system class, 

stand-alone FPGAs, is characterized by not being 

directly associated with or controlled by a software 

processor.  An example of such a system might be 

front-end preprocessors in a streaming, real-time 

system.  One or more FPGAs may be used to interface 

directly with sensors, where they perform line-rate pre-

processing and/or framing of raw data before sending it 

over the network to the main processing system.  These 

stand-alone FPGAs have the most customized internal 

architecture of all three system classes, and thus are the 

most difficult to generalize for specifying standardized 

components and design flows.   

An omnipresent component in any FPGA design 

that intends to support self-reconfiguration is the static 

configuration controller (SCC).  The SCC is mainly 

responsible for performing the reconfiguration of 

PRRs; however its responsibilities may include much 

more, depending upon the system class in which it is 

used.  In SoC or coprocessor systems, the SCC design 

can be minimal, with only a basic state machine to 

control the ICAP and interface with data FIFOs for 

buffering configuration bitstreams, as well as an 

optional decompression and/or decryption unit [1].  

However, in a stand-alone FPGA, the SCC may be 

required to serve additional roles, such as tracking of 

currently loaded modules or interfacing directly with 

other PRRs to enable dynamic, data-driven self-

reconfiguration, thus increasing the resource overhead 

of the SCC component for these systems. 

One can divide system-design scenarios into two 

categories: (1) special-purpose system design and (2) 

multipurpose system design.  Any of the previously 

defined system classes could be designed for either of 

these two scenarios.  Engineers designing special-

purpose systems have the advantage of knowing at 

design time every module that will be executed on the 

FPGAs, and thus special approaches can be employed 

in designing the partially reconfigurable system in 

order to optimize the physical mapping of static and 

reconfigurable modules according to user-defined 

rules, such as minimizing wasted resources, 

minimizing partial bitstream sizes, or maximizing 

clock frequency.  Multipurpose systems, in contrast, 



must allocate PRRs with fixed physical dimensions and 

locations, without knowing in advance how some 

application designers in the future might want to use 

the system.  Interfaces between these PRRs and the 

static region of the design must also be fixed at design-

time, further constraining the capability of the system 

to support arbitrary applications in the future.  Because 

of this uncertainty, the PR design strategy for 

multipurpose systems should be focused on 

maximizing flexibility and promoting design reuse. 

In addition to defining system classes and 

recognizing different design scenarios, it is important 

to define the basic metrics that we will use to measure 

and compare the quality of PR designs.  Maximum 

achievable clock frequency is an important design 

metric to many engineers, and the manual 

floorplanning and other PR-specific overheads can 

affect the clock frequency relative to what is 

achievable by following a standard (non-PR) FPGA 

design flow.  Another important metric is bitstream 

size. One established benefit of partial reconfiguration 

is the reduction of bitstream sizes, which decreases 

reconfiguration latency at run-time as well as reduces 

the amount of data that must be communicated over a 

network or read from memory.  Bitstream compression 

can be used as well to further reduce the size of partial 

bitstreams.  An analysis presented in Section 4.1 

suggests that the physical geometry of a given module 

can significantly affect the corresponding partial 

bitstream size, so it may be possible to optimize a 

design so as to minimize total storage requirements.  

Finally, resource efficiency can become an issue when 

the designer is heavily involved in floorplanning of an 

FPGA (such as with PR design).  Allocating PRRs of 

fixed sizes, which fit within the configuration frame 

granularity of the target device and provide sufficient 

resources to each of the modules that will share a given 

PRR, can be challenging to achieve while minimizing 

the amount of wasted resources. 

4. PR Design Framework 

The class of system being designed has more of an 

impact on the modules and interfaces present in a PR 

design, as well as the responsibilities of the SCC.  

However, the actual PR design flow should be tailored 

to the design scenario, regardless of the targeted system 

class, as described in this section. 

4.1 Special-purpose Systems 

From a designer’s point of view, special-purpose 

FPGA systems have the distinct advantage of 

containing all the information that is needed to create a 

tailored, highly optimized design implementation 

before system deployment.  For special-purpose 

systems, all PR modules that will exist throughout the 

life of the system are known at design-time, as are the 

transitions that define which PR modules exist for each 

context.  As such, the design methodology for special-

purpose systems can be divided into three main stages: 

region partitioning, overlay generation, and 

implementation with timing verification.  An 

illustration of this process is shown in Figure 2. 

 

 
 

Figure 2. PR flow for special-purpose systems. 
 

After the system as a whole has been architected, 

the first stage in special-purpose designs that 

differentiate them from normal, non-PR designs is 

region partitioning.  One of the critical advantages of 

PR is that time-independent tasks can multiplex the 

hardware resources of a single device.  For non-PR 

designs, all these time-independent tasks would coexist 

on the FPGA fabric, with idle tasks simply wasting 

resources.  PR prevents those resources from being 

wasted by loading and unloading the hardware modules 

from shared sections of the FPGA fabric.  Doing so can 

result in a reduced device count and/or a smaller 

FPGA.  However, in order for this hardware-

multiplexing to take place, some form of mapping must 

exist that specifies which device resources are to be 

shared by which PR modules. 

In general, a special-purpose system will be 

characterized by a state-transition table.  The entries 

within this table define the macro states that the system 

transitions through during all phases of operation as 

well as the modules that exist within each specific 

state.  By locating sets of modules that do not exist at 

the same time over all states, the designer can allocate 

those modules to specific shared PR regions.  Whether 

automated or performed by hand, this region 

partitioning requires heuristic solutions with many 

optimization goals available.  These goals can include 

minimizing the number of PR regions, which would 



minimize the run-time of the Xilinx implementation 

tools, minimizing the total size of the regions to save 

resources, minimizing the number of I/O nets per 

region to prevent bus macro overhead, and many more. 

After region partitioning, the designer will have 

obtained a set of PR regions, each of which containing 

a set of PR modules.  In the next stage, overlay 

generation, these PR regions are mapped to specific 

locations within the FPGA fabric, in effect creating an 

overlay with holes or sockets for each PR region.  To 

ensure that each module within a specific PR region 

can “plug” into its socket, wrapper files must be 

generated that ensure the top-level declaration of each 

module has the same port-level interface as every other 

module in that same region.  Next, by synthesizing 

each individual module and comparing the resource 

requirements for each module within a specific region, 

the designer can determine the overall resource needs 

of each PR region.  This resource knowledge is a 

critical advantage in special-purpose systems, as each 

PR socket in the overlay can be sized, shaped, and 

positioned to meet known needs.   

At this point, the designer is once again faced 

with a problem requiring a heuristic solution: how to 

best map these PR regions to physical locations within 

the FPGA.  One option is to use generic, pre-existing 

overlays such as those mentioned in the related 

research section, but doing so defeats the principle of 

having a special-purpose system.  A better solution 

would be to algorithmically generate an overlay to 

match the needs of the specific design and then 

estimate the quality of this overlay by using a weighted 

sum of costs.  Cost functions could include aspect ratio, 

amount of wasted resources, position relative to needed 

IOBs, routability, and others.  The overlay could then 

be modified and rescored for a number of iterations 

until an acceptable solution is found.  Alternatively, the 

designer could craft a custom overlay by hand, but we 

have found this method to be a tedious and error-prone 

operation with very inconsistent results [5]. 

We are currently trying to quantitatively analyze 

these cost functions so that an automated solution to 

this stage can be developed in the future. Initially, we 

have analyzed the performance effects (e.g. clock 

frequency, partial bitstream size) of varying the size 

and shape of PR regions containing different classes of 

PR modules, such as slice-intensive, memory-

intensive, DSP-intensive and other hybrid types.  Table 

1 shows the different cores used as test PR modules, as 

well as their resource requirements when targeting an 

XC4VSX55 device.  These cores include constant 

false-alarm rate detection (CFAR), beamforming 

(BEAM), an ARM7 soft-core processor (ARM7), 

advanced encryption standard (AES), and a simple 

sine/cosine look-up table (LUT).   

Figure 3 plots the performance results of varying 

the aspect ratio, defined as the height in slices divided 

by the width in slices, of a PR region that contains an 

individual test core (two selected charts are offered of 

the five total cores that we have studied).  These results 

are also compared to an unconstrained baseline and 

summarized in Tables 2 and 3.  The baseline is defined 

as the performance of the core when it is not forced 

into the fixed geometry of a PR region but, instead, is 

allowed to be placed and routed freely. 
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Figure 3. PR metrics vs. aspect ratio. 

 
Table 1. Resource requirements on XC4VSX55 device. 

 

 LUTs FFs BRAMs DSPs 

CFAR 4130 3625 34 2 

BEAM 6484 5732 17 16 

ARM7 3348 942 16 10 

AES 3855 3943 4 0 

LUT 199 60 27 0 

 

 

Table 2. Clock frequency variation (MHz). 

 

 Baseline frequency Frequency range 

CFAR 103.6 104.7 – 118.8 

BEAM 127.8 151.2 – 204.2 

ARM7 40.9 38.9 – 41.7 

AES 80.5 75.9 – 86.7 

LUT 204.9 157.2 – 203.1 



Table 3. Compressed bitstream size variation (KB). 

 

 Baseline size Size range 

CFAR 1,001 690 – 773 

BEAM 1,614 726 – 819 

ARM7 872 484 – 515 

AES 1,393 639 – 677 

LUT 571 726 – 819 

 

Our results reveal that slice-intensive designs show 

best results for both clock frequency and bitstream size 

with an aspect ratio between about 2 and 4. One 

explanation for this result is that these aspect ratios are 

in the same ballpark as the aspect ratio of the device as 

a whole (2.66).  Similarly, non-slice-intensive designs 

show best performance with aspect ratios >> 4.  

Resource wastage is minimized at these aspect ratios as 

well.  This result is almost certainly due to the 

columnar distribution of RAMB16/DSP48 resources 

within the device layout.  Another important result that 

we have observed is that the effect of aspect ratio on 

performance is more pronounced for cores with higher 

maximum operating clock frequencies. 

Based upon these results, we are presently 

designing overlay optimization algorithms that can 

profile the individual PR regions in a special-purpose 

design and then help determine an efficient overlay that 

is tailored to the specific resource needs of the target 

system.  This heuristic approach should eliminate the 

guesswork that occurs during this phase of a special-

purpose design and provide improved design 

performance when compared to manual overlay 

generation, in addition to decreasing the amount of 

time spent in this stage of the special-purpose design 

flow. 

After completing the overlay generation stage, the 

designer will have a useable overlay to accompany the 

module mappings.  The last step in a special-purpose 

design is to generate the partial bitstreams that 

represent each of the PR modules as well as full 

bitstreams to represent each of the states within the 

state-transition table.  The full bitstreams are necessary 

to ensure that each possible combination of PR 

modules satisfies the timing constraints of the system.  

A top-level wrapper is first generated to tie the design 

together, with black-box instantiations of each 

individual PR region as well as the static section of the 

design and bus macros for communication.  Also, the 

SCC is updated to reflect the module mappings and the 

state-transition table and then inserted into the static 

portion of the design.  At this point, the special-purpose 

design is completed from the user’s perspective and the 

Xilinx software implementation tools are invoked. 

4.2 Multipurpose Systems 

Engineers developing a new multipurpose FPGA 

platform do not have the advantage of knowing in 

advance all of the modules that will be configured on 

that architecture.  Possibly because the platform being 

designed is intended to be a flexible product, or 

perhaps it is impossible to fully anticipate future 

upgrades that will be required to avoid obsolescence or 

support new missions.   We propose a design flow for 

multipurpose FPGA systems, illustrated in Figure 4, 

which promotes design reusability as well as the 

potential elimination of repeated qualification efforts.  

An important feature of multipurpose system design is 

the decomposition of the overall flow into two phases, 

one for the base design (i.e. static portion), and one for 

each partially reconfigurable module that is to be used 

within that base design. 

 

 
 

Figure 4. PR flow for multipurpose systems. 
 

The flexibility, efficiency, and reusability of a 

multipurpose PR system hinges largely on the degree 

of planning performed, and the level of anticipation of 

future designs that is possible at the beginning of the 

design cycle.    The ultimate goal of the planning step 

is to decide on an overlay specification, which 

describes the shape and location of each PRR in the 

design, as well as an interface specification or template 

for each PRR.  Two key issues that have to be 

considered during this “planning” step are: (1) PRR 

shaping and placement, and (2) interface definition for 

connecting each PRR to the remainder of the design.  

By defining a certain shape and size for a given PRR, a 

system designer is effectively fixing the number of 

resources available to the users for designing their own 

PR modules.  Also, since signals that will cross 



between regions must be fixed in the base design and 

connected to bus macros, the interfaces on the PRRs 

cannot change.  However, there are instances 

depending upon the system class where these issues 

may not pose a significant challenge.  For example, in 

an SoC architecture, the interface issue might not be a 

concern since the PRRs will likely be attached to the 

CoreConnect bus of the PowerPC or MicroBlaze 

subsystem.  The CoreConnect bus interfaces are 

already standardized, so fixing the interfaces of the 

PRRs at design-time should not pose any problem. 

Once an overlay has been determined, the base 

flow only needs to be performed once to generate the 

base bitstream.  The only difference between the base 

flow and a non-PR design flow is the specific way of 

partitioning the top-level design [10], and the presence 

of bus macros and the SCC.  The constraints specified 

in the planning stage are used to lock down the 

placement of PRRs and bus macros in the .ucf file, and 

the design is then run through the normal Xilinx 

software tool flow to generate the base bitstream.  The 

base bitstream can be downloaded to the device at any 

time, but it must also be archived for use when 

designing the PR modules for this system. 

When an application designer wants to implement 

a new application on this platform (or upgrade an 

existing one), they only need to go through the second 

phase of the design flow and are completely insulated 

from the full, top-level design.  An interface 

specification or template should be available for each 

PRR in the design, which can be used as the “top level” 

of the partially reconfigurable component.  This 

isolation from the remainder of the design reduces the 

execution times in the synthesis and place & route 

tools, which otherwise can be exceedingly high during 

the iterative development and testing stage of large 

chip designs.  However, it should be noted that after a 

new PR module has been designed, it still must be 

combined with the base bitstream by the design tools 

for timing verification of the entire design. 

To help illustrate the challenge of specifying 

efficient and flexible PR designs, we have proposed 

three generic example FPGA floorplans for a Virtex-4 

LX25 device, which decompose the FPGA into one, 

two, or four PRRs.  Figure 5 shows each of the three 

floorplans (note: the yellow regions represent bus 

macro placement), and Table 4 quantifies the resource 

overhead of the PR-specific components of each 

architecture. 

In these example architectures, only the SCC and 

bus macros exist in the static portion of the design.  It 

should be noted that many systems may have a 

significant amount of user-defined logic located in the 

static portion, such as memory or network interface 

logic.  The configuration frame resolution of Virtex-4 

devices is 16 configurable logic blocks (CLB) of a 

single column, where each CLB consists of four slices 

arranged in a 2×2 array.   Given the 96-CLB height of 

the XC4VLX25 device, the frame resolution puts a 

significant restriction on the minimum height of any 

region of the device.  In each of the three example 

layouts, the SCC region represents the smallest 

possible static region (one configuration frame in 

height).  If no logic beyond the requisite SCC and bus 

macros is present in the static region of the design, then 

the SCC resource utilization numbers represent the 

worst-case SCC overhead.  However, in designs where 

user-defined logic shares the static region with the 

SCC, more efficient use is made of the resources in the 

static region, thereby reducing overhead.  The actual 

overhead in that case would be the difference between 

the total static resources and the resources used by non-

SCC logic.  The number of bus macros used to connect 

the various regions was also selected to try and mimic 

a worst-case overhead, by providing as many signal 

paths between modules as possible.   

 

Table 4. PR-specific overheads of floorplans. 

 

Arch.  

(# PRRs) 

Bus Macros 

(in slices) 

SCC 

(in slices) 

Total % of  

V4-LX25 

One 522 1910 22.7 % 

Two 792 1664 22.9 % 

Four 1508 1784 30.6 % 

 

 
 

Figure 5. Example floorplans on XC4VLX25 device, with (a) one, (b) two, or (c) four PRRs. 



5 Conclusions 

Partial, self-reconfiguration is a powerful and 

increasingly practical capability of Xilinx FPGAs.  

However, the full potential of this level of 

reconfigurability has yet to be harnessed due to the 

relative youth of the technology and supporting design 

tools and a host of challenges.  PR can enable the time-

multiplexing of hardware resources on an FPGA and 

increase the adaptability of the system, allowing 

smaller devices to provide the same functionality as 

larger, statically configured devices.  PR can also be 

leveraged to enhance the fault-tolerance capabilities of 

a system through configuration scrubbing, fault-

isolation, and adaptive protection.  The newest Xilinx 

devices, in both the Virtex-4 and Virtex-5 families, 

have important architectural differences from previous 

Virtex device families that make them much more 

amenable to partial reconfiguration.  However, along 

with these enhanced capabilities comes a whole new 

design optimization problem, a problem with solutions 

that differ depending on the applicable system design 

scenario. 

We have presented an organized view of the 

common use-cases of FPGAs in today’s computing 

platforms, as well as proposed optimized PR design 

methodologies that are tailored to the purpose of the 

system being designed.  Our work contributes much-

needed research exploration of PR design with the 

latest FPGA devices and software tools, and provides 

insight into the new capabilities and key challenges of 

these new technologies.  We have also extended our 

investigation of PR to include a wider range of system 

classes and applications. 

However, there is still much work to be done.  

Based upon the performance impact that we have 

observed of varying PRR geometries, we are currently 

working on designing and analyzing virtual overlay 

optimization algorithms.  There is a strong need to ease 

the PR design process with automated tools, and this 

overlay generation and optimization algorithm could be 

leveraged to create new methods for a CAD tool to 

assist in the design of special-purpose systems.  

Multipurpose systems present an interesting challenge 

to maximize the ability of a fixed architecture to 

support arbitrary modules, due to the need for interface 

standardization and fixed allocation of resources at 

design-time.  Additional research and collaboration is 

needed to propose more effective methods of 

optimizing these multipurpose system designs.  Lastly, 

PR could be leveraged to provide reconfigurable fault 

tolerance, allowing a common architecture to support 

multiple levels of fault tolerance, depending upon 

mission requirements or environmental conditions.   
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