

FPGA Design Framework for Dynamic Partial Reconfiguration

Chris Conger, Ross Hymel, Mike Rewak, Alan D. George, and Herman Lam

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering

University of Florida

Gainesville, Florida 32611

Email: {conger, hymel, rewak, george, lam}@chrec.org

Abstract

Recent advances in Xilinx’s FPGA devices and

design tools significantly improve the practicality of

incorporating dynamic partial reconfiguration into

high-performance embedded computing systems. By

taking advantage of internal configuration access

ports, Xilinx FPGAs are capable of in-situ partial

reconfiguration without the need for external

components, a technique defined as self-reconfigura-

tion. However, proper planning and a significant

amount of manual floorplanning are required to

effectively leverage partial reconfiguration and truly

enhance the capabilities of a system and/or achieve

cost savings. This paper proposes and analyzes partial

reconfiguration design methodologies to enable self-

reconfiguration using Virtex-4 and Virtex-5 FPGAs.

1. Introduction

SRAM-based FPGAs are reprogrammable devices,

with the ability to modify their hardware architecture

easily and at any time. Partial reconfiguration (PR)

enhances this paradigm by reconfiguring only a portion

of the chip’s configuration memory, allowing the user

to load and unload user-defined hardware modules

without interrupting or resetting the rest of the device.

Reconfiguration time is decreased using PR, and

bitstream communication and/or storage costs can be

reduced. Configuration memory scrubbing (i.e.

checking for errors and correcting them, if possible) is

made possible by PR. Despite these advantages,

commercial interest in PR has not significantly

materialized due mainly to a lack of supporting

software tools and merciless design flows.

Nevertheless, the powerful potential of this level of

reconfigurability has been recognized by the research

community, and different conceptual approaches have

been developed to incorporate PR into embedded

systems using Xilinx FPGAs [1-9].

Earlier Virtex devices, up to and including the

Virtex-II Pro family, as well as their PR design tools,

are constrained by critical restrictions on PR designs.

For example, entire columns of the FPGAs have to be

reconfigured. Also, under older tool flows, static

signals cannot easily pass through a partially

reconfigurable region. Ultimately these constraints

make PR design with these older FPGA devices and

tools too impractical to be useful in a wide variety of

applications. However, with the release of the Virtex-4

and Virtex-5 series of FPGAs and their tile-based

frame architectures, PR design constraints are greatly

relaxed. With the emergence of the lucrative software-

defined radio (SDR) market, Xilinx took the initiative

to engineer a simplified PR design flow [10] within

their standard FPGA development environment. This

new design flow eliminates or automates many of the

burdensome requirements put in place by the previous

method.

Unfortunately, due to the relatively recent

unveiling of Xilinx’s new PR design flow, it is still in

an early-release phase and unavailable to the general

public. As a result, there exists a vacuum in academic

research and results exploring partially reconfigurable

systems using the latest Virtex FPGAs. By combining

our PR design experience with strategies and key

issues identified in literature, we seek to define design

methodologies and “best practices” for incorporating

dynamic self-reconfiguration into a variety of

reconfigurable computing (RC) systems based upon

Virtex-4 and Virtex-5 devices.

2. Related Research

In their early PR design approach, Ullmann et al.

proposed a partially reconfigurable architecture for

automotive systems, based on Virtex-II FPGAs [1].

Their FPGA architecture includes a MicroBlaze soft-

core processor, a static internal configuration access

port (ICAP) controller, and four user-definable,

partially reconfigurable regions (PRRs) that span the

entire height of the device. In addition to describing

the architecture of the PR device, they discuss run-time

resource management, such as keeping track of PR

module locations in memory and preservation of state

information when swapping reconfigurable modules,

both of which are important facets of dynamic self-

reconfiguration. A follow-up paper [2] explores the

same PR architecture in more detail, focusing on a

novel slice-based “bus macro” component. Bus

macros provide anchor points that allow signals to

enter and leave PR regions at known locations.

Original bus macros were based on tri-state elements

(TBUFs), which, if malfunctioning or used incorrectly,

could cause a short circuit within the FPGA and

potentially destroy it. Xilinx has since eliminated

TBUFs in Virtex-4 devices and beyond and instead has

incorporated slice-based bus macros into the PR design

flow.

Hubner et al. extended the previous work with the

MicroBlaze-based PR architecture by proposing a

technique to avoid the requirement of Virtex-II FPGAs

to reconfigure entire columns [3]. Their technique was

very involved, however, requiring the user to perform a

read-modify-write process on configuration memory

using Xilinx’s JBits tool (as opposed to simply loading

a new partial bitstream). While improving the

flexibility of PR on the earlier chips, the main

drawback to this approach is large reconfiguration

times, on the order of seconds, which may be an

intolerable reconfiguration delay in tomorrow’s high-

performance systems.

Wichman et al. proposed their own self-

reconfiguration methodology [4] using Virtex-II Pro

FPGAs. Their approach inspired our initial approach

to PR design with Virtex-4 FPGAs [5], which is to

statically floorplan the entire FPGA at design time,

breaking the overall FPGA up into pre-defined PRRs.

Wichman suggests that each module that is to be

executed on the FPGA should be placed and routed for

each region of the chip, so that multiple versions of

each module exist (one for each PRR on the FPGA).

They indicate that using external components to

perform reconfiguration of an FPGA can create a

single point of failure, and introduces the risk of losing

the ability to reprogram the FPGA in the event of a

failure of the reconfiguration controller. Because of

this risk, a recommendation is made to use the ICAP as

described in [1] for self-reconfiguration.

Research by Sedcole et al. also proposed a method

to circumvent the full-column reconfiguration

requirement of the earlier Virtex FPGAs [6]. Their

technique addresses the difficulty in routing static lines

through partially reconfigurable columns, however

their solution requires an additional step beyond place-

and-route (realized through the implementation of a

custom tool) since, at the time of their work, there was

no mechanism to specify the required constraints in

Xilinx’s design flow. They also used a read-modify-

write approach to performing the actual

reconfiguration, similar to that used in [3].

Partial reconfiguration can also be leveraged to

improve the reliability and lifetime of FPGA devices,

as described by Emmert et al. [7]. They proposed a

mechanism called Self-Testing AReas (STARs), a

process that runs in the background and scans the

FPGA in small square areas looking for permanent

faults. Upon discovery of a faulty area of the chip,

their mechanism reconfigures the design to simply

“avoid” the bad section. They extended this research

in [8] by considering enhanced capabilities such as

partial use of a faulty region, as well as optimizing

spare region allocation so as to minimize wasted

resources and impact on system performance during

normal operation. Other research discusses the use of

PR for system-level fault tolerance on a more

conceptual level, where the PR design flow is analyzed

in detail and key challenges and design tradeoffs are

highlighted [9]. An important observation is the need

for and value of automated design tools, which help

insulate the designer from the low-level details of a PR

design and optimize the performance and efficiency of

partially reconfigurable FPGA architectures.

3. Understanding the PR Design Space

Generally speaking, FPGAs are used to implement

a wide variety of hardware architectures. Before

proposing or suggesting any particular PR design

strategy, it is important to consider the type of system

or platform that is being designed. Both the device-

level and system-level architecture of a reconfigurable

computing (RC) platform will directly impact the

connectivity of PR-specific mechanisms with other

modules or system components. Another issue to

consider is whether or not every potential PR module is

defined prior to system implementation. If every

application, or version of a specific application, that

will be executed on a particular system is known at

design time, then engineers can take advantage of this

information to help optimize interfaces as well as

determine resource-efficient FPGA floorplans.

However, it is often conceivable that an FPGA system

or board may be designed with the intention to re-use it

for multiple missions in the future, or to upgrade

components as improved or updated versions emerge.

To clarify these concepts, we have defined three

system classes as well as two different system design

scenarios, which describe and refer to common use-

cases of FPGAs in contemporary systems.

The three defined system classes include: (a)

System-on-Chip (SoC), (b) coprocessor, and (c) stand-

alone, as illustrated in Figure 1. FPGAs-based designs

for SoC are characterized by the presence and use of

Figure 1. Example illustrations of common FPGA use-cases: (a) System-on-Chip,

(b) coprocessor, and (c) stand-alone.

on-chip, hard-core PowerPC processors or soft-core

MicroBlaze processors, as well as an on-chip bus

interconnect such as IBM’s CoreConnect for

interfacing various on- and off-chip peripherals with

each other and the software processor(s).

FPGAs used as coprocessors are characterized by

an association or pairing with some external software

processor, where the software processor serves as a

master and the FPGA coprocessor serves as a worker,

typically a high-performance computational offload

engine (or alternately, perhaps as an intelligent network

controller). The internal architecture of a coprocessor-

class FPGA can be more customized than the SoC-

class FPGA, and typically the internal control logic is

relatively simple. Good examples of coprocessor-class

FPGA systems are PCI-based FPGA cards that fit into

slots on a typical workstation motherboard, or high-

performance computing (HPC) systems such as

XtremeData’s XD1000 platform, which pairs an AMD

Opteron with an FPGA by housing the FPGA in one of

the two HyperTransport-connected Opteron sockets of

a dual-processor motherboard.

SoC- and coprocessor-class systems both have the

advantage of being able to rely upon software to help

manage and control the FPGA. The third system class,

stand-alone FPGAs, is characterized by not being

directly associated with or controlled by a software

processor. An example of such a system might be

front-end preprocessors in a streaming, real-time

system. One or more FPGAs may be used to interface

directly with sensors, where they perform line-rate pre-

processing and/or framing of raw data before sending it

over the network to the main processing system. These

stand-alone FPGAs have the most customized internal

architecture of all three system classes, and thus are the

most difficult to generalize for specifying standardized

components and design flows.

An omnipresent component in any FPGA design

that intends to support self-reconfiguration is the static

configuration controller (SCC). The SCC is mainly

responsible for performing the reconfiguration of

PRRs; however its responsibilities may include much

more, depending upon the system class in which it is

used. In SoC or coprocessor systems, the SCC design

can be minimal, with only a basic state machine to

control the ICAP and interface with data FIFOs for

buffering configuration bitstreams, as well as an

optional decompression and/or decryption unit [1].

However, in a stand-alone FPGA, the SCC may be

required to serve additional roles, such as tracking of

currently loaded modules or interfacing directly with

other PRRs to enable dynamic, data-driven self-

reconfiguration, thus increasing the resource overhead

of the SCC component for these systems.

One can divide system-design scenarios into two

categories: (1) special-purpose system design and (2)

multipurpose system design. Any of the previously

defined system classes could be designed for either of

these two scenarios. Engineers designing special-

purpose systems have the advantage of knowing at

design time every module that will be executed on the

FPGAs, and thus special approaches can be employed

in designing the partially reconfigurable system in

order to optimize the physical mapping of static and

reconfigurable modules according to user-defined

rules, such as minimizing wasted resources,

minimizing partial bitstream sizes, or maximizing

clock frequency. Multipurpose systems, in contrast,

must allocate PRRs with fixed physical dimensions and

locations, without knowing in advance how some

application designers in the future might want to use

the system. Interfaces between these PRRs and the

static region of the design must also be fixed at design-

time, further constraining the capability of the system

to support arbitrary applications in the future. Because

of this uncertainty, the PR design strategy for

multipurpose systems should be focused on

maximizing flexibility and promoting design reuse.

In addition to defining system classes and

recognizing different design scenarios, it is important

to define the basic metrics that we will use to measure

and compare the quality of PR designs. Maximum

achievable clock frequency is an important design

metric to many engineers, and the manual

floorplanning and other PR-specific overheads can

affect the clock frequency relative to what is

achievable by following a standard (non-PR) FPGA

design flow. Another important metric is bitstream

size. One established benefit of partial reconfiguration

is the reduction of bitstream sizes, which decreases

reconfiguration latency at run-time as well as reduces

the amount of data that must be communicated over a

network or read from memory. Bitstream compression

can be used as well to further reduce the size of partial

bitstreams. An analysis presented in Section 4.1

suggests that the physical geometry of a given module

can significantly affect the corresponding partial

bitstream size, so it may be possible to optimize a

design so as to minimize total storage requirements.

Finally, resource efficiency can become an issue when

the designer is heavily involved in floorplanning of an

FPGA (such as with PR design). Allocating PRRs of

fixed sizes, which fit within the configuration frame

granularity of the target device and provide sufficient

resources to each of the modules that will share a given

PRR, can be challenging to achieve while minimizing

the amount of wasted resources.

4. PR Design Framework

The class of system being designed has more of an

impact on the modules and interfaces present in a PR

design, as well as the responsibilities of the SCC.

However, the actual PR design flow should be tailored

to the design scenario, regardless of the targeted system

class, as described in this section.

4.1 Special-purpose Systems

From a designer’s point of view, special-purpose

FPGA systems have the distinct advantage of

containing all the information that is needed to create a

tailored, highly optimized design implementation

before system deployment. For special-purpose

systems, all PR modules that will exist throughout the

life of the system are known at design-time, as are the

transitions that define which PR modules exist for each

context. As such, the design methodology for special-

purpose systems can be divided into three main stages:

region partitioning, overlay generation, and

implementation with timing verification. An

illustration of this process is shown in Figure 2.

Figure 2. PR flow for special-purpose systems.

After the system as a whole has been architected,

the first stage in special-purpose designs that

differentiate them from normal, non-PR designs is

region partitioning. One of the critical advantages of

PR is that time-independent tasks can multiplex the

hardware resources of a single device. For non-PR

designs, all these time-independent tasks would coexist

on the FPGA fabric, with idle tasks simply wasting

resources. PR prevents those resources from being

wasted by loading and unloading the hardware modules

from shared sections of the FPGA fabric. Doing so can

result in a reduced device count and/or a smaller

FPGA. However, in order for this hardware-

multiplexing to take place, some form of mapping must

exist that specifies which device resources are to be

shared by which PR modules.

In general, a special-purpose system will be

characterized by a state-transition table. The entries

within this table define the macro states that the system

transitions through during all phases of operation as

well as the modules that exist within each specific

state. By locating sets of modules that do not exist at

the same time over all states, the designer can allocate

those modules to specific shared PR regions. Whether

automated or performed by hand, this region

partitioning requires heuristic solutions with many

optimization goals available. These goals can include

minimizing the number of PR regions, which would

minimize the run-time of the Xilinx implementation

tools, minimizing the total size of the regions to save

resources, minimizing the number of I/O nets per

region to prevent bus macro overhead, and many more.

After region partitioning, the designer will have

obtained a set of PR regions, each of which containing

a set of PR modules. In the next stage, overlay

generation, these PR regions are mapped to specific

locations within the FPGA fabric, in effect creating an

overlay with holes or sockets for each PR region. To

ensure that each module within a specific PR region

can “plug” into its socket, wrapper files must be

generated that ensure the top-level declaration of each

module has the same port-level interface as every other

module in that same region. Next, by synthesizing

each individual module and comparing the resource

requirements for each module within a specific region,

the designer can determine the overall resource needs

of each PR region. This resource knowledge is a

critical advantage in special-purpose systems, as each

PR socket in the overlay can be sized, shaped, and

positioned to meet known needs.

At this point, the designer is once again faced

with a problem requiring a heuristic solution: how to

best map these PR regions to physical locations within

the FPGA. One option is to use generic, pre-existing

overlays such as those mentioned in the related

research section, but doing so defeats the principle of

having a special-purpose system. A better solution

would be to algorithmically generate an overlay to

match the needs of the specific design and then

estimate the quality of this overlay by using a weighted

sum of costs. Cost functions could include aspect ratio,

amount of wasted resources, position relative to needed

IOBs, routability, and others. The overlay could then

be modified and rescored for a number of iterations

until an acceptable solution is found. Alternatively, the

designer could craft a custom overlay by hand, but we

have found this method to be a tedious and error-prone

operation with very inconsistent results [5].

We are currently trying to quantitatively analyze

these cost functions so that an automated solution to

this stage can be developed in the future. Initially, we

have analyzed the performance effects (e.g. clock

frequency, partial bitstream size) of varying the size

and shape of PR regions containing different classes of

PR modules, such as slice-intensive, memory-

intensive, DSP-intensive and other hybrid types. Table

1 shows the different cores used as test PR modules, as

well as their resource requirements when targeting an

XC4VSX55 device. These cores include constant

false-alarm rate detection (CFAR), beamforming

(BEAM), an ARM7 soft-core processor (ARM7),

advanced encryption standard (AES), and a simple

sine/cosine look-up table (LUT).

Figure 3 plots the performance results of varying

the aspect ratio, defined as the height in slices divided

by the width in slices, of a PR region that contains an

individual test core (two selected charts are offered of

the five total cores that we have studied). These results

are also compared to an unconstrained baseline and

summarized in Tables 2 and 3. The baseline is defined

as the performance of the core when it is not forced

into the fixed geometry of a PR region but, instead, is

allowed to be placed and routed freely.

Clock Frequency vs. Aspect Ratio

150

160

170

180

190

200

210

0 2 4 6 8 10 12

Aspect Ratio (Height/Width)
F

re
q

u
e
n

c
y
 (

M
H

z
)

BEAM

LUT

Bitstream Size vs. Aspect Ratio

500

550

600

650

700

750

800

850

0 2 4 6 8 10 12

Aspect Ratio (Height/Width)

S
iz

e
 (

K
B

)

BEAM

LUT

Figure 3. PR metrics vs. aspect ratio.

Table 1. Resource requirements on XC4VSX55 device.

 LUTs FFs BRAMs DSPs

CFAR 4130 3625 34 2

BEAM 6484 5732 17 16

ARM7 3348 942 16 10

AES 3855 3943 4 0

LUT 199 60 27 0

Table 2. Clock frequency variation (MHz).

 Baseline frequency Frequency range

CFAR 103.6 104.7 – 118.8

BEAM 127.8 151.2 – 204.2

ARM7 40.9 38.9 – 41.7

AES 80.5 75.9 – 86.7

LUT 204.9 157.2 – 203.1

Table 3. Compressed bitstream size variation (KB).

 Baseline size Size range

CFAR 1,001 690 – 773

BEAM 1,614 726 – 819

ARM7 872 484 – 515

AES 1,393 639 – 677

LUT 571 726 – 819

Our results reveal that slice-intensive designs show

best results for both clock frequency and bitstream size

with an aspect ratio between about 2 and 4. One

explanation for this result is that these aspect ratios are

in the same ballpark as the aspect ratio of the device as

a whole (2.66). Similarly, non-slice-intensive designs

show best performance with aspect ratios >> 4.

Resource wastage is minimized at these aspect ratios as

well. This result is almost certainly due to the

columnar distribution of RAMB16/DSP48 resources

within the device layout. Another important result that

we have observed is that the effect of aspect ratio on

performance is more pronounced for cores with higher

maximum operating clock frequencies.

Based upon these results, we are presently

designing overlay optimization algorithms that can

profile the individual PR regions in a special-purpose

design and then help determine an efficient overlay that

is tailored to the specific resource needs of the target

system. This heuristic approach should eliminate the

guesswork that occurs during this phase of a special-

purpose design and provide improved design

performance when compared to manual overlay

generation, in addition to decreasing the amount of

time spent in this stage of the special-purpose design

flow.

After completing the overlay generation stage, the

designer will have a useable overlay to accompany the

module mappings. The last step in a special-purpose

design is to generate the partial bitstreams that

represent each of the PR modules as well as full

bitstreams to represent each of the states within the

state-transition table. The full bitstreams are necessary

to ensure that each possible combination of PR

modules satisfies the timing constraints of the system.

A top-level wrapper is first generated to tie the design

together, with black-box instantiations of each

individual PR region as well as the static section of the

design and bus macros for communication. Also, the

SCC is updated to reflect the module mappings and the

state-transition table and then inserted into the static

portion of the design. At this point, the special-purpose

design is completed from the user’s perspective and the

Xilinx software implementation tools are invoked.

4.2 Multipurpose Systems

Engineers developing a new multipurpose FPGA

platform do not have the advantage of knowing in

advance all of the modules that will be configured on

that architecture. Possibly because the platform being

designed is intended to be a flexible product, or

perhaps it is impossible to fully anticipate future

upgrades that will be required to avoid obsolescence or

support new missions. We propose a design flow for

multipurpose FPGA systems, illustrated in Figure 4,

which promotes design reusability as well as the

potential elimination of repeated qualification efforts.

An important feature of multipurpose system design is

the decomposition of the overall flow into two phases,

one for the base design (i.e. static portion), and one for

each partially reconfigurable module that is to be used

within that base design.

Figure 4. PR flow for multipurpose systems.

The flexibility, efficiency, and reusability of a

multipurpose PR system hinges largely on the degree

of planning performed, and the level of anticipation of

future designs that is possible at the beginning of the

design cycle. The ultimate goal of the planning step

is to decide on an overlay specification, which

describes the shape and location of each PRR in the

design, as well as an interface specification or template

for each PRR. Two key issues that have to be

considered during this “planning” step are: (1) PRR

shaping and placement, and (2) interface definition for

connecting each PRR to the remainder of the design.

By defining a certain shape and size for a given PRR, a

system designer is effectively fixing the number of

resources available to the users for designing their own

PR modules. Also, since signals that will cross

between regions must be fixed in the base design and

connected to bus macros, the interfaces on the PRRs

cannot change. However, there are instances

depending upon the system class where these issues

may not pose a significant challenge. For example, in

an SoC architecture, the interface issue might not be a

concern since the PRRs will likely be attached to the

CoreConnect bus of the PowerPC or MicroBlaze

subsystem. The CoreConnect bus interfaces are

already standardized, so fixing the interfaces of the

PRRs at design-time should not pose any problem.

Once an overlay has been determined, the base

flow only needs to be performed once to generate the

base bitstream. The only difference between the base

flow and a non-PR design flow is the specific way of

partitioning the top-level design [10], and the presence

of bus macros and the SCC. The constraints specified

in the planning stage are used to lock down the

placement of PRRs and bus macros in the .ucf file, and

the design is then run through the normal Xilinx

software tool flow to generate the base bitstream. The

base bitstream can be downloaded to the device at any

time, but it must also be archived for use when

designing the PR modules for this system.

When an application designer wants to implement

a new application on this platform (or upgrade an

existing one), they only need to go through the second

phase of the design flow and are completely insulated

from the full, top-level design. An interface

specification or template should be available for each

PRR in the design, which can be used as the “top level”

of the partially reconfigurable component. This

isolation from the remainder of the design reduces the

execution times in the synthesis and place & route

tools, which otherwise can be exceedingly high during

the iterative development and testing stage of large

chip designs. However, it should be noted that after a

new PR module has been designed, it still must be

combined with the base bitstream by the design tools

for timing verification of the entire design.

To help illustrate the challenge of specifying

efficient and flexible PR designs, we have proposed

three generic example FPGA floorplans for a Virtex-4

LX25 device, which decompose the FPGA into one,

two, or four PRRs. Figure 5 shows each of the three

floorplans (note: the yellow regions represent bus

macro placement), and Table 4 quantifies the resource

overhead of the PR-specific components of each

architecture.

In these example architectures, only the SCC and

bus macros exist in the static portion of the design. It

should be noted that many systems may have a

significant amount of user-defined logic located in the

static portion, such as memory or network interface

logic. The configuration frame resolution of Virtex-4

devices is 16 configurable logic blocks (CLB) of a

single column, where each CLB consists of four slices

arranged in a 2×2 array. Given the 96-CLB height of

the XC4VLX25 device, the frame resolution puts a

significant restriction on the minimum height of any

region of the device. In each of the three example

layouts, the SCC region represents the smallest

possible static region (one configuration frame in

height). If no logic beyond the requisite SCC and bus

macros is present in the static region of the design, then

the SCC resource utilization numbers represent the

worst-case SCC overhead. However, in designs where

user-defined logic shares the static region with the

SCC, more efficient use is made of the resources in the

static region, thereby reducing overhead. The actual

overhead in that case would be the difference between

the total static resources and the resources used by non-

SCC logic. The number of bus macros used to connect

the various regions was also selected to try and mimic

a worst-case overhead, by providing as many signal

paths between modules as possible.

Table 4. PR-specific overheads of floorplans.

Arch.

(# PRRs)

Bus Macros

(in slices)

SCC

(in slices)

Total % of

V4-LX25

One 522 1910 22.7 %

Two 792 1664 22.9 %

Four 1508 1784 30.6 %

Figure 5. Example floorplans on XC4VLX25 device, with (a) one, (b) two, or (c) four PRRs.

5 Conclusions

Partial, self-reconfiguration is a powerful and

increasingly practical capability of Xilinx FPGAs.

However, the full potential of this level of

reconfigurability has yet to be harnessed due to the

relative youth of the technology and supporting design

tools and a host of challenges. PR can enable the time-

multiplexing of hardware resources on an FPGA and

increase the adaptability of the system, allowing

smaller devices to provide the same functionality as

larger, statically configured devices. PR can also be

leveraged to enhance the fault-tolerance capabilities of

a system through configuration scrubbing, fault-

isolation, and adaptive protection. The newest Xilinx

devices, in both the Virtex-4 and Virtex-5 families,

have important architectural differences from previous

Virtex device families that make them much more

amenable to partial reconfiguration. However, along

with these enhanced capabilities comes a whole new

design optimization problem, a problem with solutions

that differ depending on the applicable system design

scenario.

We have presented an organized view of the

common use-cases of FPGAs in today’s computing

platforms, as well as proposed optimized PR design

methodologies that are tailored to the purpose of the

system being designed. Our work contributes much-

needed research exploration of PR design with the

latest FPGA devices and software tools, and provides

insight into the new capabilities and key challenges of

these new technologies. We have also extended our

investigation of PR to include a wider range of system

classes and applications.

However, there is still much work to be done.

Based upon the performance impact that we have

observed of varying PRR geometries, we are currently

working on designing and analyzing virtual overlay

optimization algorithms. There is a strong need to ease

the PR design process with automated tools, and this

overlay generation and optimization algorithm could be

leveraged to create new methods for a CAD tool to

assist in the design of special-purpose systems.

Multipurpose systems present an interesting challenge

to maximize the ability of a fixed architecture to

support arbitrary modules, due to the need for interface

standardization and fixed allocation of resources at

design-time. Additional research and collaboration is

needed to propose more effective methods of

optimizing these multipurpose system designs. Lastly,

PR could be leveraged to provide reconfigurable fault

tolerance, allowing a common architecture to support

multiple levels of fault tolerance, depending upon

mission requirements or environmental conditions.

6 Acknowledgements

This work was supported in part by the I/UCRC

Program of the National Science Foundation under

Grant No. EEC-0642422. The authors gratefully

acknowledge the software tools donated by Xilinx that

helped make this work possible.

7 References

[1] M. Ullmann, M. Huebner, B. Grimm, and J. Becker,

“An FPGA Run-Time System for Dynamical On-

Demand Reconfiguration,” Proc. of the 18th

International Parallel and Distributed Processing

Symposium, Apr. 26-30, 2004.

[2] M. Huebner, T. Becker, and J. Becker, “Real-Time

LUT-Based Network Topologies for Dynamic and

Partial FPGA Self-Reconfiguration,” Proc. of 17th

Symposium on Integrated Circuit and Systems

Design, Sep. 7-11, 2004, pp. 28-32.

[3] M. Huebner, C. Schuck, M. Kuhnle, and J. Becker,

“New 2-Dimensional Partial Dynamic Reconfigura-

tion Techniques for Real-time Adaptive Microelec-

tronic Circuits,” Proc. of 2006 Emerging VLSI

Technologies and Architectures, Mar. 2-3, 2006.

[4] S. Wichman, S. Adyha, S. Ahrens, R. Ambli, B.

Alcorn, D. Connors, and D. Fay, “Partial

Reconfiguration Across FPGAs,” Proc. of Military

and Aerospace Applications of Programmable Logic

Devices and Technologies Conference, Sep. 26-28,

2006.

[5] R. Hymel, A. George, and H. Lam, “Evaluating

Partial Reconfiguration for Embedded FPGA

Applications,” Proc. of 11th Annual High-

Performance Embedded Computing Workshop,

Lexington, MA, Sep. 19-21, 2007.

[6] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght, and

T. Becker, “Modular Partial Reconfiguration in

Virtex FPGAs,” Proc. of 2005 International

Conference on Field Programmable Logic and

Applications, Aug. 24-26, 2005, pp. 211-216.

[7] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici,

“Dynamic Fault Tolerance in FPGAs via Partial

Reconfiguration,” Proc. of IEEE Symposium on Field

Programmable Custom Computing Machines, Apr.

17-19, 2000, pp. 165-174.

[8] J. Emmert, C. Stroud, and M. Abramovici, “Online

Fault Tolerance for FPGA Logic Blocks,” IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 15, No. 2, Feb., 2007, pp. 216-226.

[9] W. Zheng, N. Marzwell, and S. Chau, “In-System

Partial Run-Time Reconfiguration for Fault Recovery

Applications on Spacecrafts,” Proc. of IEEE

International Conference on Systems, Man, and

Cybernetics, Vol. 4, Oct. 10-12, 2005, pp. 3952-3957.

[10] Xilinx Inc., “Early Access Partial Reconfiguration

User Guide,” UG208 (v1.1), Mar. 6, 2006.

