
SystemVerilog-2009 Enhancements:
Priority/Unique/Unique0

Clifford E. Cummings
Sunburst Design, Inc.

14355 SW Allen Blvd., Suite #100
Beaverton, OR 97005

1-503-641-8446

cliffc@sunburst-design.com

ABSTRACT
SystemVerilog-2009 enhanced the case / if modifiers,
priority & unique, with new scheduling semantics to help
correctly identify more bugs during simulation. SystemVerilog-
2009 also added a new unique0 keyword to emulate the
parallel_case capability of synthesis tools. This paper will
detail how these two enhancements will help to accurately
identify more bugs in a design and provide better synthesis results
for a certain class of designs.

General Terms
Verilog, SystemVerilog, full_case, parallel_case, priority, unique,
unique0, simulation, synthesis.

Keywords
SystemVerilog, full_case, parallel_case, priority, unique, unique0.

1. INTRODUCTION
The SystemVerilog priority and unique keywords,
described in this paper, actually pre-date the SystemVerilog
language and were part of the Superlog language, most of which
was donated to Accellera and became the foundation for the early
Accellera SystemVerilog 3.0 Standard[7]. These keywords
offered a simulation-aware replacement for the existing comment-
style synthesis directives full_case and parallel_case.

Although the new SystemVerilog keywords made it possible to
detect illegal simulation conditions that would cause a mismatch
between pre- and port-synthesis simulations, over the past eight
years it was discovered through usage of these constructs in
SystemVerilog designs that their defined semantics still lacked
minor features and important error-trapping capabilities.

The SystemVerilog-2009 Standard[6] has taken important steps to
close the shortfalls in both features and error detection. This paper
describes existing priority and unique semantics and then
introduces the new unique0 keyword semantics and the

potential for enhanced error trapping capabilities. The error
trapping is still insufficient for most design teams but
recommendations are included at the end of this paper to describe
how EDA tool vendors can remedy the insufficiencies that still
exist through tool command lines options (see section 9).

2. FULL_CASE BASICS
When an engineer declares that a case statement is a
full_case case statement, the engineer is asserting that all
possible matching conditions have been listed as case items and
that any unlisted possibility is not reachable by the actual logic;
therefore, the other conditions are don't-care conditions.

An easy way to understand full_case is to compare a case
statement to a Karnaugh map (K-map) as taught in undergraduate
engineering classes.

In the K-map for any given output variable, the engineer notes
when the output is a 1 and when it is a 0. If there are input
conditions that cannot be reached, those K-map squares are filled
with X's to indicate don't-care conditions. The synthesis tool can
then optionally incorporate the X's to build simpler product terms
for the K-map. The simpler product terms translate into smaller
and faster logic.

It should be noted that the full_case directive is disabled if
the case statement includes a case-default statement.

It should also be noted that one typically will get the same
synthesis results if the full_case directive is replaced with a
case-default where every signal assigned in the body of the
case statement is assigned the value of X in the case-
default.

The biggest problem with the full_case directive is that it is a
potential command to the synthesis tool but it is a comment to the
simulator, so if the full_case directive causes the synthesis
tool to take actions to optimize the design, those same
optimizations will not be executed by the simulator, which makes
it possible to have a mismatch between pre- and post-synthesis
simulations. This can be the source of design problems in the final
synthesized design[1].

3. PARALLEL_CASE BASICS
When an engineer declares that a case statement is a
parallel_case case statement, the engineer is asserting that
it is only possible to match the case expression to one and only
one (or none) of the case items. The engineer has declared that the

case expression shall only uniquely match up to only one of the
case items.

This declaration is intended to inform the synthesis tool that no
priority encoders are required to build the logic in the case
statement and that each tested case item in the case statement
can be treated as if it were a unique if statement. The resultant
logic would be both smaller and faster than if the case items had
been assembled into a set of priority logic.

Like the full_case directive, the biggest problem with the
parallel_case directive is that it is a potential command to
the synthesis tool but it is a comment to the simulator, so if the
parallel_case directive causes the synthesis tool to take
actions to optimize the design, those same optimizations will not
be executed by the simulator, which again makes it possible to
have a mismatch between pre- and post-synthesis simulations.
This again can be the source of design problems in the final
synthesized design.

4. PRIORITY KEYWORD
The priority keyword was added to the SystemVerilog
language to be a simulation-aware replacement for the
full_case comment-style directive[5].

Apology - on behalf of most of the SystemVerilog Standards
Group, I apologize for the choice of the priority keyword.
Most on the SV Standards Group believe it is a terrible keyword
that does not describe the actual behavior imposed by this
keyword. A case statement is already a priority statement.
Within both Verilog and SystemVerilog, if the case expression
matches a case item, the case item expression is executed and
there is an implied break that causes the case statement to skip
testing all of the trailing case items, which raises the question,
how does a priority keyword change the implementation of
the design if a case statement already behaves like a priority
expression? The priority keyword does not add priority
semantics to a case statement because, by its nature, a case
statement already has priority semantics. So what does the
priority keyword really do?

From a synthesis perspective, the priority keyword really has
the same semantics as the old full_case directive. Most of the
SystemVerilog Standards Group believes that it would have been
better to replace the priority keyword with either a full_case
or all_cases keyword. The latter two would have provided a better
description of the intended behavior. Unfortunately, we
discovered this confusion and potential solution too late.

Perhaps the SystemVerilog Standards Group should consider
adding one of the keywords, full_case or all_cases as a synonym
for the priority keyword.

4.1 Priority Case
As mentioned above, a priority case construct informs the
synthesis tool that all possible cases have been defined and that
any unlisted case items can be used as don't-cares during
synthesis optimization.

The advantages that the priority case statement has over the
full_case statement are: (1) the full_case is just a
comment to the simulator, while priority case is an assertion

that is tested during simulation, and (2) if during simulation a
priority case command is executed but the case expression
does not match any of the case items, the simulator will report a
warning or violation (see sections 7 and 8).

When an engineer adds the priority keyword to a case
statement, the engineer has assumed that it is only possible to
match the defined case items in the case statement and therefore
it is safe to treat all other potential matching patterns as don't-
cares. If during simulation, none of the listed case items matches
the case expression, then the engineer's initial assumption was
wrong and it should be flagged as some form of violation for the
engineer to fix, because the synthesis tool has been directed to
treat the unspecified pattern as a don't-care. From a designer's
perspective, the best simulation behavior under these
circumstances would be to abort the simulation with a violation
message (see sections 8 and 9). This would help eliminate
incorrect design assumptions that could cause the design to have a
fatal design flaw.

If the priority case statement contains a case-default
statement, the priority testing will be disabled because every
execution of the case statement must match something, even if it
is just the default statement.

4.2 Priority If
The ability to add the priority keyword to an if statement is
new to SystemVerilog-2005 and allows an engineer to specify
if-else-if statements where all conditions that would be
covered by an else statement are treated as don't-care conditions
by a synthesis tool.

Just as a case-default disables the effects of a priority
case, an else-statement attached to the end of a priority-
if-else-if statement will disable the effects of the priority
keyword.

As with the priority case statement, the priority if
statement requires that one of the tested conditions be matched
during simulation, otherwise the simulator is required to report a
violation message.

5. UNIQUE KEYWORD
The unique keyword was added to the SystemVerilog language
to be a simulation-aware replacement for the combined
full_case parallel_case comment-style directives.

On behalf of most of the SystemVerilog Standards Group, unlike
the priority keyword, we are quite proud of the unique
keyword. Most of us believe that the unique keyword is a far
superior description of the intended check over the older and
equivalent full_case and parallel_case comment-style
synthesis commands.

The unique keyword directs the compiler and/or simulator to
ensure that whenever the corresponding case-statement or if-
statement is executed, that one of the tested items is matched and
that it is possible to match one and only one of the tested
alternatives, that the testing uniquely matches one of the tested
items and can uniquely match only one of the alternatives.

Uniqueness testing can also be treated like a onehot test, meaning
that only one of the tested alternatives can match, but also that

one of the tested alternatives MUST match. So the unique
testing also encompasses the priority testing requirement,
which is why an engineer will never use both unique and
priority on the same if or case statement (unlike the
common grouping of full_case parallel_case).

5.1 Unique Case
As mentioned above, a unique case construct informs the
synthesis tool that all possible cases have been defined, that any
unlisted case items can be used as don't-cares during synthesis
optimization and that the case expression shall only match one of
the case items so it is not necessary for the synthesis tool to build
any priority logic dependencies between the case items.

The advantages that the unique case statement has over the
full_case parallel_case directive are: (1) the
full_case parallel_case directive is just a comment to
the simulator, while unique case is an assertion that is tested
during simulation, (2) if during simulation a unique case
command is executed but the case expression does not match any
of the case items, the simulator will report a warning or violation
and (3) if during simulation it is determined that more than one of
the case items of a unique case could be executed, the
simulator will report a uniqueness violation.

5.2 Unique If
The ability to add the unique keyword to an if statement is
new to SystemVerilog-2005 and allows an engineer to specify
if-else-if statements where all conditions that would be
covered by an else statement are treated as don't-care conditions
by a synthesis tool. It also asserts that it is not possible during
simulation to match more than one of the if-tested conditions,
which informs a synthesis tool that no large and slow priority
encoders are required to build the if-specified logic equations.

Just as a case-default disables the effects of the full_case
testing, an else-statement attached to the end of a unique-if-
else-if statement will disable the priority-case effects
(fullness testing) of the unique keyword but still retain the
uniqueness testing.

6. UNIQUE0 KEYWORD (*NEW*)
Since the introduction of the priority and unique keywords,
it has been observed that there are some designs that would
benefit from the uniqueness testing without the requirement to
match one of the case items or if-else-if tested items. For
this reason, the unique0 keyword was added to the
SystemVerilog-2009 Standard[6].

The unique0 keyword is a simulation equivalent to the older
parallel_case comment-style synthesis directive.

6.1 Unique0 Case (*New*)
To understand the motivation for the unique0 keyword,
consider the example of an efficient 2-to-4 decoder in Example 1.
At the top of the always_comb procedure, the y-output is
initialized to 0, and then only if the enable is set to 1 will one of
the four outputs be reset to 0 inside of the case statement.

module dec2_4a (
 output logic [3:0] y,
 input logic [1:0] a,
 input logic en);

 always_comb begin
 y = '0;
 case ({en,a})
 3'b100 : y[a]='1;
 3'b101 : y[a]='1;
 3'b110 : y[a]='1;
 3'b111 : y[a]='1;
 endcase
 end
endmodule

Example 1 - Efficient 2-to-4 decoder model (no priority or
unique keywords used)

This case statement is not "full" because it does not list any of
the cases when enable is 0. This style is a recommended coding
style because all of the default cases have been covered by the
initial assignment at the top of the procedure (guarantees removal
of latches) and then all of the exception conditions are noted in
the case statement.

Sample synthesized logic for example Example 1 is shown in
Figure 1.

Figure 1 - 2-to-4 Decoder with enable - correct synthesis result

SystemVerilog added the unique keyword, which allowed the
simulator to give run-time warnings if (a) the case expression
could match more than one of the case items, or (b) if the case
expression did not match any of the case items.

The unique keyword informs the synthesis tool that (a) the case
items are unique so do not build priority logic base on case-item
order, and (b) all possible case conditions are listed (this is a full
case) so the output for any unspecified case item combination can
be treated as a don't-care. The latter condition overrides any pre-
default assignment that might have been specified at the top of the
procedure.

Now consider the 2-to-4 decoder of example Example 2. The
code is identical to example Example 1 except the unique
keyword has been added to the case statement.

module dec2_4b (
 output logic [3:0] y,
 input logic [1:0] a,
 input logic en);

 always_comb begin
 y = '0;
 unique case ({en,a})
 3'b100 : y[a]='1;
 3'b101 : y[a]='1;
 3'b110 : y[a]='1;
 3'b111 : y[a]='1;
 endcase
 end
endmodule

Example 2 - Flawed 2-to-4 decoder model with unique case
statement

Upon examination, it can be seen that the case statement only
defines four out of eight possible case conditions. The four
conditions defined are the four conditions when the en input is
set to 1. The unique keyword informs the synthesis tool that the
four conditions when en is 0 are don't-care conditions (overriding
the pre-default at the top of the always_comb procedure). The
synthesis tool therefore concludes that since the output is a don’t-
care whenever the en input is low, that the en input is a don't-
care and the en input is optimized out of the design as shown in
Figure 2.

Figure 2 - 2-to-4 Decoder with dangling enable - WRONG
synthesis result

Since unique is a recognized simulation keyword with
simulation semantics, the simulation should report a violation
whenever the always_comb procedure is executed when en =
0.

For the 2-to-4 decoder model, it is desirable to add uniqueness
testing without adding the full_case testing and optimization.
Prior the to addition of the unique0 keyword, in order to cancel

the full_case simulation testing and synthesis optimization,
an engineer had to add an empty case-default (remember, the
case-default cancels the priority case testing).

module dec2_4c (
 output logic [3:0] y,
 input logic [1:0] a,
 input logic en);

 always_comb begin
 y = '0;
 unique case ({en,a})
 3'b100 : y[a]='1;
 3'b101 : y[a]='1;
 3'b110 : y[a]='1;
 3'b111 : y[a]='1;
 default: ; // empty default
 endcase
 end
endmodule
Example 3 - SystemVerilog-2005 empty-default work-around

to replicate parallel_case functionality

Although this is a reasonable work-around, it is a rather awkward
looking piece of code that often requires explanation.

To avoid the awkward, empty-default of Example 3,
SystemVerilog-2009 added the ability to use a unique0
directive that would allow uniqueness testing while avoiding the
full_case testing without the addition of the awkward empty
default statement.

Example 4 shows the preferred use of the unique0 case
statement. This example code synthesizes to the correct 2-to-4
decoder implementation, just like the implementation shown in
Figure 1.

module dec2_4d (
 output logic [3:0] y,
 input logic [1:0] a,
 input logic en);

 always_comb begin
 y = '0;
 unique0 case ({en,a})
 3'b100 : y[a]='1;
 3'b101 : y[a]='1;
 3'b110 : y[a]='1;
 3'b111 : y[a]='1;
 endcase
 end
endmodule

Example 4 - SystemVerilog-2009 unique0 case decoder to
replicate parallel_case functionality

One of the nice features of the unique0 keyword is that it forces
the simulator to ensure that either none or only one of the case
items can be reached during execution of any case statement.

When one compares making a pre-default assignment prior to a
case statement, to adding a case-default, I have found that
making the pre-default assignment is both more effective at
removing latches and typically yields equal or better synthesis

results. Why does a pre-default remove latches better than a
case-default?

Consider the 2-to-4 decoder with case-default in Example 5.

module dec2_4e (
 output logic [3:0] y,
 input logic [1:0] a,
 input logic en);

 always_comb begin
 unique case ({en,a})
 3'b100 : y[a]='1;
 3'b101 : y[a]='1;
 3'b110 : y[a]='1;
 3'b111 : y[a]='1;
 default: y = '0;
 endcase
 end
endmodule

Example 5 - ERROR - 2-to-4 decoder with case-default -
infers latches

In this decoder example, the combination of unique case with
case-default appears to have all possible cases covered, but
the common mistake is that the explicit case items only set one of
the four outputs, which means that the other three outputs must
remain unchanged (they must be latched).

It is very easy to make a latch-inference coding mistake using a
case-default when multiple outputs are assigned in the same
case statement. If the same case-default is repositioned to
be a pre-default assignment at the top of the always_comb
block, then all latches will be removed. As long as all outputs are
assigned to anything (even X's) at the top of the procedure, no
latch inference will occur. This technique is simple, effective and
synthesis efficient.

6.2 Unique0 If (*New*)
The SystemVerilog-2009 Standard also allows the unique0
keyword to be added to an if-else-if statement.

Just like a unique0 case , the unique0 if imposes
uniqueness testing but does not require any of the tested if
conditions to be matched during simulation. In synthesis, no
priority encoder will be built from the conditions tested in the if-
else-if statement.

7. SYSTEMVERILOG-2005 WARNINGS
SystemVerilog-2005 requires a simulator to report warnings if a
priority or unique test-expression does not match any of the
listed case items or if-tests.

SystemVerilog-2005 similarly requires a simulator to report
warnings if a unique case test-expression would match more
than one of the listed case items during simulation, or if more than
one of the unique if-test conditions would match during
simulation.

The priority testing is essentially a strict must-match test
while the unique testing is essentially a strict onehot test.

Unfortunately, because these are warnings and not fatal errors,
they are easy to miss, and many engineers have told me that

priority/unique cannot be reliably used because it is too
easy for design errors to go unnoticed. Engineers have requested a
more strongly tested version of the same constructs; hence, the
SystemVerilog-2009 violation enhancement of the next section.

8. SYSTEMVERILOG-2009 VIOLATIONS
(*NEW*)
In SystemVerilog-2009, a new type of violation checking replaces
the SystemVerilog-2005 warning checks for unique and
priority constructs, as well as the new unique0 construct.
Strictly speaking, the violation checking is not a stronger check; it
is just a different check, but with user encouragement, we might
convince EDA vendors to turn the violation into a stronger check
(see section 9).

Clause 12.4.2.1 of the new SystemVerilog-2009 standard states:

A unique, unique0, or priority violation check is
evaluated at the time the statement is executed, but violation
reporting is deferred until the Observed region of the current
time step.

Since all module RTL code is executed in the Active Region set
that includes the Active events region where all of the properly
coded[2] always_comb procedures are executed, the
combinational logic will iterate and settle out within the Active
region before any violations can be reported in the Observed
region (see Figure 3).

Figure 3 - SystemVerilog-2009 Event Scheduling - Violation
checks in Observed Region

Consider the fully coded 2-to-1 mux example based on the
example code in clause 12.5.3.1 of the IEEE SystemVerilog-2009
Standard.

The descriptions in 12.5.3 mentions several cases in which a
violation report shall be generated by unique-case, unique0-
case, or priority-case statements. These violation checks
shall be immune to false violation reports due to zero-delay
glitches in the active region set (see 4.4.1).

The mechanics of handling zero-delay glitches shall be identical
to those used when processing zero-delay glitches for unique-
if, unique0-if, and priority-if constructs (see 12.4.2.1).

The following is an example of a unique-case that is immune
to zero-delay glitches in the active region set:

module sv_logic1 (
 output logic z,
 input logic a, b, c);

 logic not_a;

 always_comb begin: a1
 not_a = ~a;
 end

 always_comb begin: b1
 unique case (1'b1)
 a : z = b;
 not_a : z = c;
 endcase
 end
endmodule

Example 6 - 2-to-1 mux implemented with two concurrent
always_comb blocks

Figure 4 - Violation scheduling and removal from concurrent
always_comb blocks

In this example the unique case is checking for overlap in the
two case_item selects. When a and not_a are in states 0 and 1
respectively and a transitions to 1, the following sequence of
events can happen (see Figure 4):

(1) a changes from 0 to 1, which would cause process a1 and
b1 to trigger with indeterminate order. For this example,
assume that process b1 triggers first.

(2) Process b1 triggers and both a and not_a both
momentarily have the values of 1.

(2a) In process b1, the unique case could be executed while a
and not_a are both true, so the violation check for
uniqueness will fail, and the scheduled failure will be
reported in the Observed region.

(3) When process b1 completes, process a1 would then trigger
and invert the value of not_a.

(4) When not_a is inverted, it will again trigger process b1
while still in the Active events region.

(4a) In process b1, the unique case will determine that there is
no overlap in the case items, so the scheduled violation in the
Observed region will be flushed. From this example, it can
be seen that although there was a momentary glitch where
the unique case would have reported a violation, the
logic settled to a valid state to satisfy the unique case
assumption and no violation will be reported.

A note about violations and combinational logic. The violation
enhancement works with 0-delay combinational RTL code, which
is sufficient for most RTL coders. If the separate assignments had
unit delays between updates, there could be multiple
combinational settling violations during simulation. One the
design is synthesized and rendered into a gate-level
representation, the unique/unique0/priority keywords
will have been removed so even gate-level models with delays
will not be subject to these RTL-related violations.

9. FATAL ON VIOLATION
Although the introduction of violations is a good first step, most
engineers want a simulation to abort on an error. Although not
required by the IEEE Std 1800-2009, it would be most useful if
EDA vendors would provide a command line switch to enable
aborting on a violation of the unique/unique0/priority
constructs. The command line switch would be optional and could
be easily turned off to disable aborting on violations.

The only reason to add the unique/unique0/priority
keywords to an RTL design is to inform the synthesis tool of a
design assumption that would allow optimization of the RTL
design during synthesis. If the assumption is incorrect, the
engineer would like to be notified by having a simulation abort,
forcing the engineer to examine the circumstances that caused the
design to abort.

If it becomes possible to enable abort-on-violation for the
unique/unique0/priority constructs, many design teams
would mandate that the switch be permanently enabled during
simulation to catch these potentially fatal design errors.

If vendors are unwilling to provide the abort-on-violation
capability, then this enhancement has done nothing more than to
change the warning messages from "warning" to "violation" and
little has been gained.

Engineers, unite! Tell your vendors that you would like a vendor
option (such as a command line switch) to force
priority/unique violations to cause the simulation to abort.

10. ACKNOWLEDGEMENTS
My thanks to my friends and colleagues Heath Chambers of HMC
Design Verification and Shalom Bresticker of Intel Israel for
offering valuable suggestions to improve the quality and content
of this paper.

11. REFERENCES
[1] Clifford E. Cummings, '"full_case parallel_case", the Evil

Twins of Verilog Synthesis,' SNUG'99 Boston Proceedings,
Boston, MA, 1999. Also available at

www.sunburst-design.com/papers

[2] Clifford E. Cummings, “Nonblocking Assignments in
Verilog Synthesis, Coding Styles That Kill!,” SNUG-2000
proceedings, March 2000. Also available at

www.sunburst-design.com/papers

[3] Don Mills and Clifford E. Cummings, “RTL Coding Styles
That Yield Simulation and Synthesis Mismatches,” SNUG-
1999 Proceedings, March 1999. Also available at
www.lcdm-eng.com/papers.htm and www.sunburst-
design.com/papers

[4] "IEEE Standard Verilog Hardware Description Language,"
IEEE Computer Society, IEEE, New York, NY, IEEE Std
1364-2001

[5] "IEEE Standard For SystemVerilog - Unified Hardware
Design, Specification and Verification Language," IEEE
Computer Society, IEEE, New York, NY, IEEE Std 1800-
2005

[6] "IEEE Standard For SystemVerilog - Unified Hardware
Design, Specification and Verification Language," IEEE
Computer Society, IEEE, New York, NY, IEEE Std 1800-
2009

[7] "SystemVerilog 3.0 Accellera's Extensions to Verilog,"
Accellera, 2002, freely downloadable from:
www.systemverilog.org

